Assessing the Efficiency of Phenotyping Early Traits in a Greenhouse Automated Platform for Predicting Drought Tolerance of Soybean in the Field

被引:23
|
作者
Peirone, Laura S. [1 ,2 ]
Pereyra Irujo, Gustavo A. [2 ,3 ]
Bolton, Alejandro [1 ,3 ]
Erreguerena, Ignacio [3 ]
Aguirrezabal, Luis A. N. [1 ,2 ]
机构
[1] Univ Nacl Mar del Plata, Fac Ciencias Agr, Lab Fisiol Vegetal, Balcarce, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] Inst Nacl Tecnol Agr, Agron Dept, Balcarce, Argentina
来源
关键词
phenotyping; drought susceptibility index; transpiration efficiency; soybean; field; CARBON-ISOTOPE DISCRIMINATION; WATER-USE EFFICIENCY; TRANSPIRATION EFFICIENCY; GENETIC-VARIATION; PLANT-GROWTH; YIELD; RESPONSES; DEFICIT; STRESS; MAIZE;
D O I
10.3389/fpls.2018.00587
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.
引用
收藏
页数:14
相关论文
共 13 条
  • [1] Field Phenotyping of Soybean Roots for Drought Stress Tolerance
    Fenta, Berhanu A.
    Beebe, Stephen E.
    Kunert, Karl J.
    Burridge, James D.
    Barlow, Kathryn M.
    Lynch, Jonathan P.
    Foyer, Christine H.
    AGRONOMY-BASEL, 2014, 4 (03): : 418 - 435
  • [2] Early-Stage Phenotyping of Root Traits Provides Insights into the Drought Tolerance Level of Soybean Cultivars
    Dayoub, Elana
    Lamichhane, Jay Ram
    Schoving, Celine
    Debaeke, Philippe
    Maury, Pierre
    AGRONOMY-BASEL, 2021, 11 (01):
  • [3] Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field
    de Paiva Rolla, Amanda Alves
    Correa Carvalho, Josirley de Fatima
    Fuganti-Pagliarini, Renata
    Engels, Cibelle
    do Rio, Alexandre
    Rockenbach Marin, Silvana Regina
    Neves de Oliveira, Maria Cristina
    Beneventi, Magda A.
    Marcelino-Guimaraes, Francismar Correa
    Boucas Farias, Jose Renato
    Neumaier, Norman
    Nakashima, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    Nepomuceno, Alexandre Lima
    TRANSGENIC RESEARCH, 2014, 23 (01) : 75 - 87
  • [4] Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field
    Amanda Alves de Paiva Rolla
    Josirley de Fátima Corrêa Carvalho
    Renata Fuganti-Pagliarini
    Cibelle Engels
    Alexandre do Rio
    Silvana Regina Rockenbach Marin
    Maria Cristina Neves de Oliveira
    Magda A. Beneventi
    Francismar Corrêa Marcelino-Guimarães
    José Renato Bouças Farias
    Norman Neumaier
    Kazuo Nakashima
    Kazuko Yamaguchi-Shinozaki
    Alexandre Lima Nepomuceno
    Transgenic Research, 2014, 23 : 75 - 87
  • [5] Development of an automated phenotyping platform for quantifying for soybean dynamic responses to salinity stress in greenhouse environment
    Zhou, Jianfeng
    Chen, Huatao
    Zhou, Jing
    Fu, Xiuqing
    Ye, Heng
    Nguyen, Henry T.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 : 319 - 330
  • [6] Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions
    Correa Molinari, Mayla Daiane
    Fuganti-Pagliarini, Renata
    Rockenbach Marin, Silvana Regina
    Ferreira, Leonardo Cesar
    Barbosa, Daniel de Amorim
    Marcolino-Gomes, Juliana
    Neves de Oliveira, Maria Cristina
    Mertz-Henning, Liliane Marcia
    Kanamori, Norihito
    Takasaki, Hironori
    Urano, Kaoru
    Shinozaki, Kazuo
    Nakashima, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    Nepomuceno, Alexandre Lima
    GENETICS AND MOLECULAR BIOLOGY, 2020, 43 (03)
  • [7] Screening corn hybrids for early-stage drought stress tolerance using SPAR phenotyping platform
    Lone, Ajaz Ahmad
    ul Hussan, Shamshir
    Jumaa, Salah H.
    Dar, Zahoor Ahmad
    Reddy, K. Raja
    BREEDING SCIENCE, 2024, 74 (03) : 173 - 182
  • [8] Selection and Phenotyping for Drought Tolerance in Somatic Hybrids between Solanum tuberosum and Solanum bulbocastanum That Show Resistance to Late Blight, by Using a Semi-Automated Plant Phenotyping Platform
    Denes, Tuende-Eva
    Molnar, Imola
    Vass, Istvan Zoltan
    Vass, Imre
    Rakosy-Tican, Elena
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [9] Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance
    Honna, Patricia T.
    Fuganti-Pagliarini, Renata
    Ferreira, Leonardo C.
    Molinari, Mayla D. C.
    Marin, Silvana R. R.
    de Oliveira, Maria C. N.
    Farias, Jose R. B.
    Neumaier, Norman
    Mertz-Henning, Liliane M.
    Kanamori, Norihito
    Nakashima, Kazuo
    Takasaki, Hironori
    Urano, Kaoru
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    Desiderio, Janete A.
    Nepomuceno, Alexandre L.
    MOLECULAR BREEDING, 2016, 36 (11)
  • [10] Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance
    Patricia T. Honna
    Renata Fuganti-Pagliarini
    Leonardo C. Ferreira
    Mayla D. C. Molinari
    Silvana R. R. Marin
    Maria C. N. de Oliveira
    José R. B. Farias
    Norman Neumaier
    Liliane M. Mertz-Henning
    Norihito Kanamori
    Kazuo Nakashima
    Hironori Takasaki
    Kaoru Urano
    Kazuo Shinozaki
    Kazuko Yamaguchi-Shinozaki
    Janete A. Desidério
    Alexandre L. Nepomuceno
    Molecular Breeding, 2016, 36