UNIQUENESS RESULT FOR NONLINEAR ANISOTROPIC ELLIPTIC EQUATIONS

被引:0
|
作者
Di Nardo, Rosaria [1 ]
Feo, Filomena [2 ]
Guibe, Olivier [3 ]
机构
[1] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
[2] Univ Napoli Parthenope, Dipartimento Tecnol, Ctr Direz Isola C4, I-80100 Naples, Italy
[3] Univ Rouen, Lab Math Raphael Salem, CNRS, F-76801 St Etienne, France
关键词
LOWER-ORDER TERMS; RENORMALIZED SOLUTIONS; EXISTENCE; ADVECTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here a class of anisotropic elliptic equations, in a bounded domain Cl with Lipschitz continuous boundary delta Omega, of the type - partial derivative(xi)(ai(x,u)vertical bar partial derivative x(i) u vertical bar(pi-2)partial derivative(xi)u) = f- div g with Dirichlet boundary conditions. Using the framework of renormalized solutions we prove the uniqueness of the solution under a very local Lipschitz condition on the coefficients a(i)(x, s) with respect to s and with f belonging to L-1(Omega).
引用
收藏
页码:433 / 458
页数:26
相关论文
共 50 条