Lower and upper bounds for the Lyapunov exponents of twisting dynamics: a relationship between the exponents and the angle of Oseledets' splitting

被引:5
|
作者
Arnaud, M. -C. [1 ]
机构
[1] Univ Avignon & Pays de Vaucluse, Lab Anal Non Lineaire & Geometrie, EA 2151, F-84018 Avignon, France
关键词
CONJUGATE-POINTS; LAGRANGIAN SYSTEMS; ENTROPY;
D O I
10.1017/S0143385712000065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider locally minimizing measures for conservative twist maps of the d-dimensional annulus and for Tonelli Hamiltonian flows defined on a cotangent bundle T*M. For weakly hyperbolic measures of such type (i.e. measures with no zero Lyapunov exponents), we prove that the mean distance/angle between the stable and unstable Oseledets bundles gives an upper bound on the sum of the positive Lyapunov exponents and a lower bound on the smallest positive Lyapunov exponent. We also prove some more precise results.
引用
收藏
页码:693 / 712
页数:20
相关论文
共 11 条