Global wave-front sets of Banach, Frechet and modulation space types, and pseudo-differential operators

被引:21
|
作者
Coriasco, Sandro [1 ]
Johansson, Karoline [2 ]
Toft, Joachim [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10124 Turin, Italy
[2] Linnaeus Univ, Dept Comp Sci Phys & Math, Vaxjo, Sweden
关键词
Wave front; Fourier; Banach space; Modulation space; Micro-local; Pseudo-differential;
D O I
10.1016/j.jde.2013.01.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce global wave-front sets WFB(f), f is an element of'(R-d), with respect to suitable Banach or Frechet spaces B. An important special case is given by the modulation spaces B = M(omega,B), where omega is an appropriate weight function and B is a translation invariant Banach function space. We show that the standard properties for known notions of wave-front set extend to WFB(f). In particular, we prove that micro-locality and micro-ellipticity hold for a class of globally defined pseudo-differential operators Op(t)(alpha), acting continuously on the involved spaces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3228 / 3258
页数:31
相关论文
共 50 条
  • [1] Local wave-front sets of Banach and Frechet types, and pseudo-differential operators
    Coriasco, Sandro
    Johansson, Karoline
    Toft, Joachim
    MONATSHEFTE FUR MATHEMATIK, 2013, 169 (3-4): : 285 - 316
  • [2] Local wave-front sets of Banach and Fréchet types, and pseudo-differential operators
    Sandro Coriasco
    Karoline Johansson
    Joachim Toft
    Monatshefte für Mathematik, 2013, 169 : 285 - 316
  • [3] Pseudo-Differential Operators with Symbols in Modulation Spaces
    Toft, Joachim
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 223 - 234
  • [4] Pseudo-differential operators on Orlicz modulation spaces
    Toft, Joachim
    Uster, Ruya
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (01)
  • [5] Pseudo-differential operators on Orlicz modulation spaces
    Joachim Toft
    Rüya Üster
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [6] A counterexample for boundedness of pseudo-differential operators on modulation spaces
    Sugimoto, Mitsuru
    Tomita, Naohito
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1681 - 1690
  • [7] Schatten properties for pseudo-differential operators on modulation spaces
    Toft, J.
    PSEUDO-DIFFERENTIAL OPERATORS: QUANTIZATION AND SIGNALS, 2008, 1949 : 175 - 202
  • [8] Boundedness of Multilinear Pseudo-differential Operators on Modulation Spaces
    Molahajloo, Shahla
    Okoudjou, Kasso A.
    Pfander, Goetz E.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1381 - 1415
  • [9] Boundedness of Multilinear Pseudo-differential Operators on Modulation Spaces
    Shahla Molahajloo
    Kasso A. Okoudjou
    Götz E. Pfander
    Journal of Fourier Analysis and Applications, 2016, 22 : 1381 - 1415
  • [10] Global Hypoellipticity for a Class of Pseudo-differential Operators on the Torus
    Silva, Fernando de Avila
    Gonzalez, Rafael Borro
    Kirilov, Alexandre
    de Medeira, Cleber
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 1717 - 1758