Periodic Algebras Generated by Groups

被引:0
|
作者
Albeverio, S. [1 ,2 ]
Omirov, B. A. [3 ]
Rozikov, U. A. [3 ]
机构
[1] Univ Bonn, Inst Angew Math, Bonn, Germany
[2] Univ Bonn, HCM, Bonn, Germany
[3] Inst Math, Tashkent 100125, Uzbekistan
关键词
periodic algebra; Leibniz algebra; group; INFINITE-DIMENSIONAL ALGEBRAS; LIE-ALGEBRAS; CAYLEY TREE;
D O I
10.1142/S1005386715000462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider algebras with basis numerated by elements of a group G. We fix a function f from G x G to a ground field and give a multiplication of the algebra which depends on f. We study the basic properties of such algebras. In particular, we find a condition on f under which the corresponding algebra is a Leibniz algebra. Moreover, for a given subgroup (G) over cap of G we define a (G) over cap -periodic algebra, which corresponds to a (G) over cap -periodic function f, we establish a criterion for the right nilpotency of a (G) over cap -periodic algebra. In addition, for G = Z we describe all 2Z- and 3Z-periodic algebras. Some properties of nZ-periodic algebras are obtained.
引用
收藏
页码:541 / 554
页数:14
相关论文
共 50 条