Orthogonal projection and liftings of Hamilton-decomposable Cayley graphs on abelian groups

被引:1
|
作者
Alspach, Brian [1 ]
Caliskan, Cafer [2 ]
Kreher, Donald L. [3 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Hamilton-decomposable; Cayley graphs; Paley graphs; Abelian groups; DECOMPOSITIONS;
D O I
10.1016/j.disc.2013.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce the concept of (p, alpha)-switching trees and use it to provide sufficient conditions on the abelian groups G and H for when CAY (G x H; S boolean OR B) is Hamilton-decomposable, given that CAY (G; S) is Hamilton-decomposable and B is a basis for H. Applications of this result to elementary abelian groups and Paley graphs are given. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1475 / 1489
页数:15
相关论文
共 50 条
  • [1] HAMILTON-DECOMPOSABLE GRAPHS AND DIGRAPHS OF INFINITE VALENCE
    WITTE, D
    DISCRETE MATHEMATICS, 1990, 84 (01) : 87 - 100
  • [2] Hamilton cycle and Hamilton path extendability of Cayley graphs on abelian groups
    Miklavic, Stefko
    Sparl, Primoz
    JOURNAL OF GRAPH THEORY, 2012, 70 (04) : 384 - 403
  • [3] THE HAMILTON SPACES OF CAYLEY-GRAPHS ON ABELIAN-GROUPS
    ALSPACH, B
    LOCKE, SC
    WITTE, D
    DISCRETE MATHEMATICS, 1990, 82 (02) : 113 - 126
  • [4] Cayley graphs on abelian groups
    Edward Dobson
    Pablo Spiga
    Gabriel Verret
    Combinatorica, 2016, 36 : 371 - 393
  • [5] On Cayley graphs of Abelian groups
    Li, CH
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (02) : 205 - 215
  • [6] Cayley graphs on abelian groups
    Dobson, Edward
    Spiga, Pablo
    Verret, Gabriel
    COMBINATORICA, 2016, 36 (04) : 371 - 393
  • [7] On Cayley Graphs of Abelian Groups
    Cai Heng Li
    Journal of Algebraic Combinatorics, 1998, 8 : 205 - 215
  • [8] 6-regular Cayley graphs on abelian groups of odd order are hamiltonian decomposable
    Westlund, Erik E.
    Liu, Jiuqiang
    Kreher, Donald L.
    DISCRETE MATHEMATICS, 2009, 309 (16) : 5106 - 5110
  • [9] Vertex-Transitive Graphs of Prime-Squared Order Are Hamilton-Decomposable
    Alspach, Brian
    Bryant, Darryn
    Kreher, Donald L.
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (01) : 12 - 25
  • [10] Large Cayley graphs on an abelian groups
    Garcia, C
    Peyrat, C
    DISCRETE APPLIED MATHEMATICS, 1997, 75 (02) : 125 - 133