Bayesian Matching of Unlabeled Point Sets Using Procrustes and Configuration Models

被引:10
|
作者
Kenobi, Kim [1 ]
Dryden, Ian L. [2 ]
机构
[1] Univ Nottingham, Sch Biosci, Nottingham NG7 2RD, Leics, England
[2] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
来源
BAYESIAN ANALYSIS | 2012年 / 7卷 / 03期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Gibbs; Markov chain Monte Carlo; Metropolis-Hastings; molecule; protein; Procrustes; size; shape; ALIGNMENT; SHAPE;
D O I
10.1214/12-BA718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of matching unlabeled point sets using Bayesian inference is considered. Two recently proposed models for the likelihood are compared, based on the Procrustes size-and-shape and the full configuration. Bayesian inference is carried out for matching point sets using Markov chain Monte Carlo simulation. An improvement to the existing Procrustes algorithm is proposed which improves convergence rates, using occasional large jumps in the burn-in period. The Procrustes and configuration methods are compared in a simulation study and using real data,where it is of interest to estimate the strengths of matches between protein binding sites. The performance of both methods is generally quite similar, and a connection between the two models is made using a Laplace approximation.
引用
收藏
页码:547 / 565
页数:19
相关论文
共 50 条
  • [1] BAYESIAN MATCHING OF UNLABELED MARKED POINT SETS USING RANDOM FIELDS, WITH AN APPLICATION TO MOLECULAR ALIGNMENT
    Czogiel, Irina
    Dryden, Ian L.
    Brignell, Christopher J.
    ANNALS OF APPLIED STATISTICS, 2011, 5 (04): : 2603 - 2629
  • [2] CLASSIFICATION OF UNLABELED POINT SETS USING ANSIG
    Rodrigues, Jose J.
    Xavier, Joao M. F.
    Aguiar, Pedro M. Q.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2360 - 2363
  • [3] Asymmetrical Gauss Mixture Models for Point Sets Matching
    Tao, Wenbing
    Sun, Kun
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1598 - 1605
  • [4] Estimating the Distribution of Unlabeled, Correlated Point Sets
    Gardner, Andrew
    Duncan, Christian A.
    Kanno, Jinko
    Selmic, Rastko R.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [5] Learning an atlas from unlabeled point-sets
    Chui, HL
    Rangarajan, A
    IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, PROCEEDINGS, 2001, : 179 - 186
  • [6] Robust Point Sets Matching by Fusing Feature and Spatial Information Using Nonuniform Gaussian Mixture Models
    Tao, Wenbing
    Sun, Kun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3754 - 3767
  • [7] Blue-noise Optimized Point Sets based on Procrustes Analysis
    Papazov, Chavdar
    Hege, Hans-Christian
    IGGRAPH ASIA 2017 TECHNICAL BRIEFS (SA'17), 2017,
  • [8] Statistical analysis of unlabeled point sets: Comparing molecules in chemoinformatics
    Dryden, Ian L.
    Hirst, Jonathan D.
    Melville, James L.
    BIOMETRICS, 2007, 63 (01) : 237 - 251
  • [9] Unsupervised learning of an Atlas from unlabeled point-sets
    Chui, H
    Rangarajan, A
    Zhang, J
    Leonard, CM
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (02) : 160 - 172
  • [10] Collinear datasets augmentation using Procrustes validation sets
    Kucheryavskiy, Sergey
    Zhilin, Sergei
    ANALYTICA CHIMICA ACTA, 2025, 1351