Pair Copula Constructions for Multivariate Discrete Data

被引:122
|
作者
Panagiotelis, Anastasios [1 ]
Czado, Claudia [2 ]
Joe, Harry [3 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic 3145, Australia
[2] Tech Univ Munich, Zentrum Math, Munich, Germany
[3] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D-vine; Inference function for margins; Longitudinal data; Model selection; Ordered probit regression; MODEL; DECOMPOSITION; REGRESSION; VINES;
D O I
10.1080/01621459.2012.682850
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate discrete response data can be found in diverse fields, including econometrics, finance, biometrics, and psychometrics. Our contribution, through this study, is to introduce a new class of models for multivariate discrete data based on pair copula constructions (PCCs) that has two major advantages. First, by deriving the conditions under which any multivariate discrete distribution can be decomposed as a PCC, we show that discrete PCCs attain highly flexible dependence structures. Second, the computational burden of evaluating the likelihood for an m-dimensional discrete PCC only grows quadratically with in. This compares favorably to existing models for which computing the likelihood either requires the evaluation of 2(m) terms or slow numerical integration methods. We demonstrate the high quality of inference function for margins and maximum likelihood estimates, both under a simulated setting and for an application to a longitudinal discrete dataset on headache severity. This article has online supplementary material.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 50 条
  • [1] Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions
    Min, Aleksey
    Czado, Claudia
    JOURNAL OF FINANCIAL ECONOMETRICS, 2010, 8 (04) : 511 - 546
  • [2] Mixture pair-copula-constructions
    Weiss, Gregor N. F.
    Scheffer, Marcus
    JOURNAL OF BANKING & FINANCE, 2015, 54 : 175 - 191
  • [3] Nonparametric estimation of pair-copula constructions with the empirical pair-copula
    Haff, Ingrid Hobaek
    Segers, Johan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 1 - 13
  • [4] Modelling the Dependence in Multivariate Longitudinal Data by Pair Copula Decomposition
    Ruscone, Marta Nai
    Osmetti, Silvia Angela
    SOFT METHODS FOR DATA SCIENCE, 2017, 456 : 373 - 380
  • [5] Pair Copula Constructions for Insurance Experience Rating
    Shi, Peng
    Yang, Lu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 122 - 133
  • [6] Simplified pair copula constructions Limitations and extensions
    Stoeber, Jakob
    Joe, Harry
    Czado, Claudia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 119 : 101 - 118
  • [7] Beyond simplified pair-copula constructions
    Acar, Elif F.
    Genest, Christian
    Neslehova, Johanna
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 : 74 - 90
  • [8] Parameter estimation for pair-copula constructions
    Haff, Ingrid Hobaek
    BERNOULLI, 2013, 19 (02) : 462 - 491
  • [9] Pair-copula constructions of multiple dependence
    Aas, Kjersti
    Czado, Claudia
    Frigessi, Arnoldo
    Bakken, Henrik
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02): : 182 - 198
  • [10] Comparison of estimators for pair-copula constructions
    Haff, Ingrid Hobaek
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 : 91 - 105