Hybrid uncertain analysis for random convex response of structures with a mixture of random and convex properties

被引:1
|
作者
Han, Yongwei [1 ]
Guo, Zhaopu [1 ,2 ]
Deng, Zhongmin [1 ]
机构
[1] Beihang Univ, Sch Astronaut, XueYuan Rd 37, Beijing 100191, Peoples R China
[2] Beijing Power Machinery Inst, Beijing 100074, Peoples R China
基金
中国国家自然科学基金;
关键词
Random convex responses; Random variables; Convex variables; Neumann series; Lagrange multiplier method; HEAT-CONDUCTION; RELIABILITY; SYSTEMS;
D O I
10.1007/s00419-018-1487-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a new numerical algorithm named hybrid Neumann Lagrange method for static analysis of structural systems with a mixture of random and convex variables. The random variables are used to treat the uncertain parameters with sufficient statistical information, whereas the convex variables are used to describe the uncertain parameters with limited information. The expressions for expectation and variance of random convex structural displacements are developed based on the Neumann series theory. Then the first-order Taylor series and the Lagrange multiplier method are employed to determine the upper and lower bounds of these probabilistic characters of the structural responses. By comparing with the results of Monte Carlo simulation, numerical examples are given to verify the effectiveness of the proposed method.
引用
收藏
页码:699 / 711
页数:13
相关论文
共 50 条
  • [1] Hybrid uncertain analysis for random convex response of structures with a mixture of random and convex properties
    Yongwei Han
    Zhaopu Guo
    Zhongmin Deng
    Archive of Applied Mechanics, 2019, 89 : 699 - 711
  • [2] Hybrid uncertainty analysis for a static response problem of structures with random and convex parameters
    Guo, Zhaopu
    Deng, Zhongmin
    Li, Xuxu
    Han, Yongwei
    ACTA MECHANICA, 2017, 228 (09) : 2987 - 3001
  • [3] Hybrid uncertainty analysis for a static response problem of structures with random and convex parameters
    Zhaopu Guo
    Zhongmin Deng
    Xuxu Li
    Yongwei Han
    Acta Mechanica, 2017, 228 : 2987 - 3001
  • [4] ON RANDOM FIXED POINTS IN RANDOM CONVEX STRUCTURES
    Ganguly, Ashok
    Chandel, Raghvendra Singh
    Parsai, Ravindra
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (02): : 51 - 57
  • [5] ON RANDOM CONVEX ANALYSIS
    Guo, Tiexin
    Zhang, Erxin
    Wu, Mingzhi
    Yang, Bixuan
    Yuan, George
    Zeng, Xiaolin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (11) : 1967 - 1996
  • [6] A new method for reliability analysis of structures with mixed random and convex variables
    Zhang, Jinhao
    Xiao, Mi
    Gao, Liang
    APPLIED MATHEMATICAL MODELLING, 2019, 70 : 206 - 220
  • [7] RANDOM CONVEX PROGRAMS
    Calafiore, Giuseppe Carlo
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3427 - 3464
  • [8] MULTIVARIATE ADJUTUALLY STATIONARY RANDOM FUNCTIONS ON CONVEX STRUCTURES
    Ponomarenko, O. I.
    Perun, Yu. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2006, 74 : 116 - 128
  • [9] Probabilistic Interval Response and Reliability Analysis of Structures with A Mixture of Random and Interval Properties
    Gao, Wei
    Song, Chongmin
    Tin-Loi, Francis
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 46 (02): : 151 - 189
  • [10] Random variables, monotone relations, and convex analysis
    Rockafellar, R. T.
    Royset, J. O.
    MATHEMATICAL PROGRAMMING, 2014, 148 (1-2) : 297 - 331