Taylor's power law of fluctuation scaling and the growth-rate theorem

被引:28
作者
Cohen, Joel E. [1 ,2 ]
机构
[1] Rockefeller Univ, Lab Populat, New York, NY 10065 USA
[2] Columbia Univ, Earth Inst, Lab Populat, New York, NY USA
基金
美国国家科学基金会;
关键词
Exponential growth; Population growth rate; Lewontin-Cohen model; Variance; Population density; FUNDAMENTAL THEOREM; SYNOPTIC DYNAMICS; NATURAL-SELECTION; VARIANCE; DENSITY; DISTRIBUTIONS; STABILITY; GENETICS; SYSTEMS;
D O I
10.1016/j.tpb.2013.04.002
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Taylor's law (TL), a widely verified empirical relationship in ecology, states that the variance of population density is approximately a power-law function of mean density. The growth-rate theorem (GR) states that, in a subdivided population, the rate of change of the overall growth rate is proportional to the variance of the subpopulations' growth rates. We show that continuous-time exponential change implies GR at every time and, asymptotically for large time, TL with power-law exponent 2. We also show why diverse population-dynamic models predict TL in the limit of large time by identifying simple features these models share: If the mean population density and the variance of population density are (exactly or asymptotically) non-constant exponential functions of a parameter (e.g., time), then the variance of density is (exactly or asymptotically) a power-law function of mean density. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 100
页数:7
相关论文
共 31 条
[1]   VARIABILITY IN THE ABUNDANCE OF ANIMAL AND PLANT-SPECIES [J].
ANDERSON, RM ;
GORDON, DM ;
CRAWLEY, MJ ;
HASSELL, MP .
NATURE, 1982, 296 (5854) :245-248
[2]  
[Anonymous], 2012, ECOL PROCESS, DOI DOI 10.1186/2192-1709-1-5
[3]  
Arruda Neto J. D. T., 2012, Atmospheric and Climate Sciences, V2, P8, DOI 10.4236/acs.2012.21002
[4]  
Cohen JE, 2013, MULTIPLICATIVE UNPUB
[5]   Stochastic multiplicative population growth predicts and interprets Taylor's power law of fluctuation scaling [J].
Cohen, Joel E. ;
Xu, Meng ;
Schuster, William S. F. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1757)
[6]   Allometric scaling of population variance with mean body size is predicted from Taylor's law and density-mass allometry [J].
Cohen, Joel E. ;
Xu, Meng ;
Schuster, William S. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) :15829-15834
[7]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[9]  
Edwards A.W.F., 1987, NEW PALGRAVE DICT EC, VII, p[95, 376], DOI DOI 10.1057/9780230226203.2569.THE
[10]  
Edwards A.W. F., 2000, FDN MATH GENETICS, V2nd