A logistic regression model for measuring gene-longevity associations

被引:12
|
作者
Tan, Q
Yashin, AI
De Benedictis, G
Cintolesi, F
Rose, G
Bonafe, M
Franceschi, C
Vach, W
Vaupel, JW
机构
[1] Max Planck Inst Demog Res, D-18057 Rostock, Germany
[2] Duke Univ, Ctr Demog Studies, Durham, NC USA
[3] Duke Univ, Sanford Inst, Durham, NC USA
[4] Univ Calabria, Cell Biol Dept, Arcavacata Di Rende, Italy
[5] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 2JD, England
[6] Univ Bologna, Dept Expt Pathol, I-40126 Bologna, Italy
[7] Univ So Denmark, Dept Stat & Demog, Copenhagen, Denmark
关键词
gene; logistic regression; longevity;
D O I
10.1034/j.1399-0004.2001.600610.x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The logistic regression model is a popular model for data analysis in epidemiological research. In this paper, we use this model to analyze genetic data collected from gene-longevity association studies. This new approach models the probability of observing one genotype as a function of the age of investigated individuals. Applying the model to genotype data on the TH and 3ApoB-VNTR loci collected from an Italian centenarian study, we show how it can be used to model the different ways that genes affect survival, including sex- and age-specific influences. We highlight the advantages of this application over other available models. The application of the model to empirical data indicates that it is an efficient and easily applicable approach for determining the influences of genes on human longevity.
引用
收藏
页码:463 / 469
页数:7
相关论文
共 50 条
  • [1] A novel sampling design to explore gene-longevity associations: the ECHA study
    De Rango, Francesco
    Dato, Serena
    Bellizzi, Dina
    Rose, Giuseppina
    Marzi, Erika
    Cavallone, Luca
    Franceschi, Claudio
    Skytthe, Axel
    Jeune, Bernard
    Cournil, Amandine
    Robine, Jean Marie
    Gampe, Jutta
    Vaupel, James W.
    Mari, Vincenzo
    Feraco, Emidio
    Passarino, Giuseppe
    Novelletto, Andrea
    De Benedictis, Giovanna
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2008, 16 (02) : 236 - 242
  • [2] A novel sampling design to explore gene-longevity associations: the ECHA study
    Francesco De Rango
    Serena Dato
    Dina Bellizzi
    Giuseppina Rose
    Erika Marzi
    Luca Cavallone
    Claudio Franceschi
    Axel Skytthe
    Bernard Jeune
    Amandine Cournil
    Jean Marie Robine
    Jutta Gampe
    James W Vaupel
    Vincenzo Mari
    Emidio Feraco
    Giuseppe Passarino
    Andrea Novelletto
    Giovanna De Benedictis
    European Journal of Human Genetics, 2008, 16 : 236 - 242
  • [3] Recent advances in human gene-longevity association studies
    De Benedictis, G
    Tan, QH
    Jeune, B
    Christensen, K
    Ukraintseva, SV
    Bonafè, M
    Franceschi, C
    Vaupel, JW
    Yashin, AI
    MECHANISMS OF AGEING AND DEVELOPMENT, 2001, 122 (09) : 909 - 920
  • [4] Power Estimation for Gene-Longevity Association Analysis Using Concordant Twins
    Tan, Qihua
    Zhao, Jing Hua
    Kruse, Torben
    Christensen, Kaare
    GENETICS RESEARCH INTERNATIONAL, 2014, 2014
  • [5] Logistic regression models for polymorphic and antagonistic pleiotropic gene action on human aging and longevity
    Tan, QH
    Bathum, L
    Christiansen, L
    De Benedictis, G
    Dahlgaard, J
    Frizner, N
    Vach, W
    Vaupel, JW
    Yashin, AI
    Christensen, K
    Kruse, TA
    ANNALS OF HUMAN GENETICS, 2003, 67 : 598 - 607
  • [6] Measuring the Usability Probability of Learning Management Software using Logistic Regression Model
    Okike, Ezekiel U.
    Morogosi, Merapelo
    2017 COMPUTING CONFERENCE, 2017, : 1217 - 1223
  • [7] Measuring Satisfaction with Transit and Car Trips with Use of One Logistic Regression Model
    Papaioannou, Demetrios
    Martinez, L. Miguel
    TRANSPORTATION RESEARCH RECORD, 2016, (2543) : 101 - 107
  • [8] Suppression for Logistic Regression Model
    Hong, C. S.
    Kim, H. I.
    Ham, J. H.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2005, 18 (03) : 701 - 712
  • [9] A deeper look at two concepts of measuring gene-gene interactions: logistic regression and interaction information revisited
    Mielniczuk, Jan
    Teisseyre, Pawel
    GENETIC EPIDEMIOLOGY, 2018, 42 (02) : 187 - 200
  • [10] Measuring character candidate confidence using logistic regression model and its performance evaluation
    Li, Yuanxiang
    Ding, Xiaoqing
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2002, 15 (02):