Growing of integrable turbulence

被引:5
|
作者
Agafontsev, D. S. [1 ,2 ]
Zakharov, V. E. [2 ,3 ]
机构
[1] RAS, Shirshov Inst Oceanol, Moscow 117997, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Univ Arizona, Dept Math, Tucson, AZ 85720 USA
基金
俄罗斯科学基金会;
关键词
integrable turbulence; pumping; nonlinear Schrodinger equation;
D O I
10.1063/10.0001541
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear Schrodinger equation using a new method - the "growing of turbulence". We add to the equation a weak controlled pumping term and start adiabatic evolution of turbulence from statistically homogeneous Gaussian noise. After reaching a certain level of average intensity, we switch off the pumping and realize that the "grown up" turbulence is statistically stationary. We measure its Fourier spectrum, the probability density function (PDF) of intensity and the autocorrelation of intensity. Additionally, we show that, being adiabatic, our method produces stationary states of the integrable turbulence for the intermediate moments of pumping as well. Presently, we consider only the turbulence of relatively small level of nonlinearity; however, even this "moderate" turbulence is characterized by enhanced generation of rogue waves.
引用
收藏
页码:786 / 791
页数:6
相关论文
共 50 条
  • [1] Growing of integrable turbulence
    Agafontsev, D.S.
    Zakharov, V.E.
    Agafontsev, D.S. (dmitrij@itp.ac.ru), 2020, Institute for Low Temperature Physics and Engineering (46): : 934 - 939
  • [2] Bound-state soliton gas as a limit of adiabatically growing integrable turbulence
    Agafontsev, Dmitry S.
    Gelash, Andrey A.
    Mullyadzhanov, Rustam I.
    Zakharov, Vladimir E.
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [3] Intermittency in Integrable Turbulence
    Randoux, Stephane
    Walczak, Pierre
    Onorato, Miguel
    Suret, Pierre
    PHYSICAL REVIEW LETTERS, 2014, 113 (11)
  • [4] Turbulence in Integrable Systems
    Zakharov, Vladimir E.
    STUDIES IN APPLIED MATHEMATICS, 2009, 122 (03) : 219 - 234
  • [5] Integrable turbulence and formation of rogue waves
    Agafontsev, D. S.
    Zakharov, V. E.
    NONLINEARITY, 2015, 28 (08) : 2791 - 2821
  • [6] Optical Rogue Waves in integrable turbulence
    Suret, Pierre
    Walczak, Pierre
    Randoux, Stephane
    REAL-TIME MEASUREMENTS, ROGUE EVENTS, AND EMERGING APPLICATIONS, 2016, 9732
  • [7] Nonlinear dispersion relation in integrable turbulence
    Tikan, Alexey
    Bonnefoy, Felicien
    Ducrozet, Guillaume
    Prabhudesai, Gaurav
    Michel, Guillaume
    Cazaubiel, Annette
    Falcon, Eric
    Copie, Francois
    Randoux, Stephane
    Suret, Pierre
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Optical Rogue Waves in Integrable Turbulence
    Walczak, Pierre
    Randoux, Stephane
    Suret, Pierre
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [9] Nonlinear dispersion relation in integrable turbulence
    Alexey Tikan
    Félicien Bonnefoy
    Guillaume Ducrozet
    Gaurav Prabhudesai
    Guillaume Michel
    Annette Cazaubiel
    Éric Falcon
    Francois Copie
    Stéphane Randoux
    Pierre Suret
    Scientific Reports, 12
  • [10] Statistics of Extreme Events in Integrable Turbulence
    Congy, T.
    El, G. A.
    Roberti, G.
    Tovbis, A.
    Randoux, S.
    Suret, P.
    PHYSICAL REVIEW LETTERS, 2024, 132 (20)