The sequence of return words of the Fibonacci sequence

被引:11
|
作者
Huang, Yuke [1 ]
Wen, Zhiying [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Return words; Fibonacci sequence; Singular kernel; Singular decomposition; Spectrum; LYNDON WORDS;
D O I
10.1016/j.tcs.2015.05.048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let omega be a factor of the Fibonacci sequence F-infinity = x(1)x(2) ..., then it occurs in the sequence infinitely many times. Let omega(p) be the p-th occurrence of omega and r(p)(omega) be the p-th return word over omega. In this paper, we study the structure of the sequence of return words {r(p)(omega)}(p >= 1). We first introduce the singular kernel word sk(omega) for any factor omega of F-infinity and give a decomposition of co with respect to sk(omega). Using the singular kernel and the decomposition, we prove that the sequence of return words over the alphabet {r(1)(omega), r(2)(omega)} is still a Fibonacci sequence. We also determine the expressions of return words completely for each factor. Finally we introduce the spectrum for studying some combinatorial properties, such as power, overlap and separate of factors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 50 条
  • [1] The Fibonacci sequence
    Zaeperel
    COMPTES RENDUS DES SEANCES DE LA SOCIETE DE BIOLOGIE ET DE SES FILIALES, 1919, 82 : 853 - 855
  • [2] Fibonacci Sequence
    Graubart, Michael
    TEMPO, 2009, 250 : 58 - 59
  • [3] INTERESTING SEQUENCE OF FIBONACCI SEQUENCE GENERATORS
    HEED, JJ
    KELLY, L
    FIBONACCI QUARTERLY, 1975, 13 (01): : 29 - 30
  • [4] On primes in the Fibonacci sequence
    Drobot, V
    FIBONACCI QUARTERLY, 2000, 38 (01): : 71 - 72
  • [5] A KIND OF FIBONACCI SEQUENCE
    SHI, XQ
    CHINESE SCIENCE BULLETIN, 1994, 39 (04): : 348 - 349
  • [6] Another Fibonacci sequence
    Libis, C
    FIBONACCI QUARTERLY, 2003, 41 (05): : 467 - 468
  • [7] Pulsating Fibonacci sequence
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2013, 19 (03) : 12 - 14
  • [8] EQUIPROBABILITY IN THE FIBONACCI SEQUENCE
    ERLEBACH, L
    VELEZ, WY
    FIBONACCI QUARTERLY, 1983, 21 (03): : 189 - 191
  • [9] A Kind of Fibonacci Sequence
    施锡泉
    Chinese Science Bulletin, 1994, (04) : 348 - 349
  • [10] A GENERALIZED FIBONACCI SEQUENCE
    HORADAM, AF
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (05): : 455 - &