A q-analogue of a two-dimensional hydrogen atom

被引:1
|
作者
Zeng, GJ
Li, M
机构
[1] HUNAN NORMAL UNIV,DEPT PHYS,CHANGSHA 410006,HUNAN,PEOPLES R CHINA
[2] CHANGDE HIGHER COLL,CHANGDE 415003,HUNAN,PEOPLES R CHINA
关键词
D O I
10.1007/BF02435922
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new method for the q-analogue of a hydrogen atom is presented. By using the method, we construct a model of a two-dimensional q-hydrogen atom, and determine its energy, angular momentum, and state vectors. The method may be extended to cases of arbitrary dimension.
引用
收藏
页码:1289 / 1298
页数:10
相关论文
共 50 条
  • [1] A q-Analogue of a Two-Dimensional Hydrogen Atom
    Int J Theor Phys, 6 (1289):
  • [2] Aq-analogue of a two-dimensional hydrogen atom
    Gao-Jian Zeng
    Ming Li
    International Journal of Theoretical Physics, 1997, 36 : 1289 - 1298
  • [3] A Common q-Analogue of Two Supercongruences
    Guo, Victor J. W.
    Zudilin, Wadim
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [4] A Common q-Analogue of Two Supercongruences
    Victor J. W. Guo
    Wadim Zudilin
    Results in Mathematics, 2020, 75
  • [5] The two-dimensional hydrogen atom revisited
    Parfitt, DGW
    Portnoi, ME
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) : 4681 - 4691
  • [6] ON A q-ANALOGUE OF THE ONE- DIMENSIONAL HEAT EQUATION
    Fitouhi, Ahmed
    Bettaibi, Neji
    Mezlini, Kamel
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (02): : 145 - 173
  • [7] A two-sided q-analogue of the Coxeter complex
    Linckelmann, M
    Schroll, S
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 128 - 134
  • [8] Exact Noncommutative Two-Dimensional Hydrogen Atom
    Wang, B. C.
    Brenag, E. C.
    Amorim, R. G. G.
    Rispoli, V. C.
    Ulhoa, S. C.
    ADVANCES IN HIGH ENERGY PHYSICS, 2021, 2021
  • [9] Clebsch–Gordan Coefficient for q,s-Deformed Two-Dimensional Hydrogen Atom
    Zhao-Xian Yu
    Ye-Hou Liu
    International Journal of Theoretical Physics, 1998, 37 : 2043 - 2053
  • [10] A q-ANALOGUE OF A HYPERGEOMETRIC CONGRUENCE
    Gu, Cheng-Yang
    Guo, Victor J. W.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) : 294 - 298