Classical orthogonal polynomials as moments

被引:36
|
作者
Ismail, MEH [1 ]
Stanton, D [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
classical orthogonal polynomials; Al-Salam-Chihara polynomials; continuous q-ultraspherical polynomials; generating functions; multilinear generating functions; transformation formulas; umbral calculus;
D O I
10.4153/CJM-1997-024-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Meixner, Pollaczek, Meixner-Pollaczek, the continuous q-ultraspherical polynomials and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear rind multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials.
引用
收藏
页码:520 / 542
页数:23
相关论文
共 50 条
  • [1] On moments of classical orthogonal polynomials
    Sadjang, P. Njionou
    Koepf, W.
    Foupouagnigni, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 122 - 151
  • [2] Some Linear Functionals Having Classical Orthogonal Polynomials as Moments
    M. J. Atia
    B. Bouras
    S. Leffet
    Mediterranean Journal of Mathematics, 2014, 11 : 601 - 616
  • [3] Some Linear Functionals Having Classical Orthogonal Polynomials as Moments
    Atia, M. J.
    Bouras, B.
    Leffet, S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 601 - 616
  • [4] ON THE MOMENTS OF ORTHOGONAL POLYNOMIALS
    KRALL, AM
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (03): : 359 - 362
  • [5] CLASSICAL ORTHOGONAL POLYNOMIALS
    ANDREWS, GE
    ASKEY, R
    LECTURE NOTES IN MATHEMATICS, 1985, 1171 : 36 - 62
  • [6] ON CLASSICAL ORTHOGONAL POLYNOMIALS
    ATAKISHIYEV, NM
    RAHMAN, M
    SUSLOV, SK
    CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) : 181 - 226
  • [7] Negative moments of orthogonal polynomials
    Jang, Jihyeug
    Kim, Donghyun
    Kim, Jang Soo
    Song, Minho
    Song, U-Keun
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [8] Classical Orthogonal Polynomials Revisited
    Castillo, K.
    Petronilho, J.
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [9] Duality for classical orthogonal polynomials
    Askey, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 37 - 43
  • [10] Discrete classical orthogonal polynomials
    Kwon, KH
    Lee, DW
    Park, SB
    Yoo, BH
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1998, 4 (02) : 145 - 162