EIGENVALUES OF POLYHARMONIC OPERATORS ON VARIABLE DOMAINS

被引:32
|
作者
Buoso, Davide [1 ]
Lamberti, Pier Domenico [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35126 Padua, Italy
关键词
Polyharmonic operators; eigenvalues; domain perturbation; RAYLEIGHS CONJECTURE; SPECTRAL STABILITY; LAPLACE OPERATOR; PERTURBATION;
D O I
10.1051/cocv/2013054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechet differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.
引用
收藏
页码:1225 / 1235
页数:11
相关论文
共 50 条