A multiple penalty function method for solving Max-Bisection problems

被引:1
|
作者
Xu, FM [1 ]
Xu, CX [1 ]
Xue, HG [1 ]
机构
[1] Xian Jiaotong Univ, Dept Math, Fac Sci, Xian 710049, Peoples R China
关键词
Max-Bisection problem; multiple penalty function; NCP function; circuit partitioning problem; semidefinite programming;
D O I
10.1016/j.amc.2005.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuation algorithm for the solution of Max-Bisection problems is proposed in this paper. Unlike available relaxation algorithms for Max-Bisection problems, the Max-Bisection problems are converted to an equivalent continuous nonlinear programming by employing NCP functions, and the resulting nonlinear programming problem is then solved using the augmented Lagrange penalty function method. The convergence property and finite termination property of the proposed algorithm are studied, and numerical experiments and comparisons on the simple circuit partitioning problems are made. Results reported in section "Numerical experiments" show the algorithm generates satisfactory solutions to test problems. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:757 / 766
页数:10
相关论文
共 50 条
  • [1] A new Lagrangian net algorithm for solving max-bisection problems
    Xu Fengmin
    Ma Xusheng
    Chen Baili
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3718 - 3723
  • [2] A feasible direction algorithm without line search for solving max-bisection problems
    Xu, FM
    Xu, CX
    Xue, HG
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (06) : 619 - 634
  • [3] A modified VNS metaheuristic for max-bisection problems
    Ling, Ai-fan
    Xu, Cheng-xian
    Tang, Le
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 413 - 421
  • [4] Memetic search for the max-bisection problem
    Wu, Qinghua
    Hao, Jin-Kao
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 166 - 179
  • [5] Neighborhood Combination Strategies for Solving the Bi-objective Max-Bisection Problem
    Zeng, Rong-Qiang
    Basseur, Matthieu
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 123 - 131
  • [6] A .699-approximation algorithm for Max-Bisection
    Ye, YY
    MATHEMATICAL PROGRAMMING, 2001, 90 (01) : 101 - 111
  • [7] An Efficient Memetic Algorithm for the Max-Bisection Problem
    Lin, Geng
    Zhu, Wenxing
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (06) : 1365 - 1376
  • [8] A note on approximating Max-Bisection on regular graphs
    Feige, U
    Karpinski, M
    Langberg, M
    INFORMATION PROCESSING LETTERS, 2001, 79 (04) : 181 - 188
  • [9] A .699-approximation algorithm for Max-Bisection
    Yinyu Ye
    Mathematical Programming, 2001, 90 : 101 - 111
  • [10] Improved approximation algorithms for the max-bisection and the disjoint 2-catalog segmentation problems
    Zi Xu
    Donglei Du
    Dachuan Xu
    Journal of Combinatorial Optimization, 2014, 27 : 315 - 327