Single annulus LP estimates for Hilbert transforms along vector fields

被引:23
|
作者
Bateman, Michael [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
Carleson's theorem; time-frequency analysis; Stein's conjecture; Zygmund's conjecture; differentiation of vector fields; Hilbert transform in direction of a vector field; MAXIMAL OPERATORS; AVERAGES; SETS;
D O I
10.4171/RMI/748
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove L-P estimates, p is an element of (1, infinity), on the Hilbert transform along a one variable vector field acting on functions with frequency support in an annulus. Estimates when p > 2 were proved by Lacey and Li. This paper also contains key technical ingredients for a companion paper with Christoph Thiele in which L-P estimates are established for the full Hilbert transform. The operators considered here are singular integral variants of maximal operators arising in the study of planar differentiation problems.
引用
收藏
页码:1021 / 1069
页数:49
相关论文
共 50 条
  • [1] SINGLE ANNULUS ESTIMATES FOR THE VARIATION-NORM HILBERT TRANSFORMS ALONG LIPSCHITZ VECTOR FIELDS
    Guo, Shaoming
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (02) : 601 - 615
  • [2] Lp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD
    Bateman, Michael
    Thiele, Christoph
    ANALYSIS & PDE, 2013, 6 (07): : 1577 - 1600
  • [3] Lp ESTIMATES FOR BILINEAR AND MULTIPARAMETER HILBERT TRANSFORMS
    Dai, Wei
    Lu, Guozhen
    ANALYSIS & PDE, 2015, 8 (03): : 675 - 712
  • [4] HILBERT TRANSFORM ALONG MEASURABLE VECTOR FIELDS CONSTANT ON LIPSCHITZ CURVES: Lp BOUNDEDNESS
    Guo, Shaoming
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (04) : 2493 - 2519
  • [5] Estimates for Hilbert transforms along variable general curves
    Yu, Haixia
    He, Kaili
    Li, Dan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [6] LP BOUNDS FOR HILBERT-TRANSFORMS ALONG CONVEX CURVES
    CORDOBA, A
    NAGEL, A
    VANCE, J
    WAINGER, S
    WEINBERG, D
    INVENTIONES MATHEMATICAE, 1986, 83 (01) : 59 - 71
  • [7] VECTOR-VALUED HILBERT TRANSFORMS ALONG CURVES
    Hong, Guixiang
    Liu, Honghai
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 430 - 450
  • [8] LP ESTIMATES FOR MAXIMAL FUNCTIONS AND HILBERT-TRANSFORMS ALONG FLAT CONVEX CURVES IN R2
    CARLSSON, H
    CHRIST, M
    CORDOBA, A
    DUOANDIKOETXEA, J
    DEFRANCIA, JLR
    VANCE, J
    WAINGER, S
    WEINBERG, D
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 14 (02) : 263 - 267
  • [9] FINITE HILBERT TRANSFORMS IN LP
    JUBERG, RK
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (03) : 435 - &
  • [10] HILBERT TRANSFORMS ALONG LIPSCHITZ DIRECTION FIELDS: A LACUNARY MODEL
    Guo, Shaoming
    Thiele, Christoph
    MATHEMATIKA, 2017, 63 (02) : 351 - 363