BOGDANOV-TAKENS BIFURCATION FOR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

被引:0
|
作者
Cao, Jianzhi [1 ]
Yuan, Rong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Neutral functional differential equations; center manifold; Bogdanov-Takens bifurcation; normal forms; NORMAL FORMS; HOPF-BIFURCATION; SINGULARITY; PARAMETERS; SYSTEMS; VAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a class of neutral functional differential equations (NFDEs). First, some feasible assumptions and algorithms are given for the determination of Bogdanov-Takens (B-T) singularity. Then, by employing the method based on center manifold reduction and normal form theory due to Faria and Magalhaes [4], a concrete reduced form for the parameterized NFDEs is obtained and the bifurcation behavior of the parameterized NFDEs is described. This result extend the B-T bifurcation analysis reported in [16]. Finally, two examples ilustrate the theoretical results.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bifurcation Analysis of Bogdanov-Takens Bifurcations in Delay Differential Equations
    Bosschaert, M. M.
    Kuznetsov, Yu. A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 553 - 591
  • [2] Bogdanov-Takens Bifurcation
    Liebscher, Stefan
    BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 81 - 102
  • [3] Bogdanov-Takens and Triple Zero Bifurcations for a Neutral Functional Differential Equations with Multiple Delays
    Achouri, Houssem
    Aouiti, Chaouki
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (01) : 355 - 380
  • [4] Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction
    Tang, YL
    Zhang, WN
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 869 - 883
  • [5] Explicit formulas for computing the normal form of Bogdanov-Takens bifurcation in delay differential equations
    Zhang, Chunrui
    Zheng, Baodong
    NONLINEAR DYNAMICS, 2017, 89 (02) : 1187 - 1194
  • [6] Bogdanov-Takens bifurcation in a neutral BAM neural networks model with delays
    Wang, Runxia
    Liu, Haihong
    Feng, Fei
    Yan, Fang
    IET SYSTEMS BIOLOGY, 2017, 11 (06) : 163 - 173
  • [7] Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    Al Hdaibat, B.
    Govaerts, W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [8] Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms
    Broer, H
    Roussarie, R
    Simo, C
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1147 - 1172
  • [9] Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms
    Gelfreich, V
    ANALYSIS AND APPLICATIONS - ISAAC 2001, 2003, 10 : 187 - 197
  • [10] Bogdanov-Takens Bifurcation in a Neutral Delayed Hopfield Neural Network with Bidirectional Connection
    Achouri, Houssem
    Aouiti, Chaouki
    Ben Hamed, Bassem
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (06)