A new direction in computational fracture mechanics in materials science: Will the combination of probabilistic and fractal fracture mechanics become mainstream?

被引:4
|
作者
Prawoto, Y. [1 ]
Tamin, M. N. [1 ]
机构
[1] Univ Teknol Malaysia, Fac Mech Engn, Utm Skudai 81310, Johor, Malaysia
关键词
Fracture mechanics; Probability; Fractal; Non-Euclidean; CRACK-GROWTH; MODEL;
D O I
10.1016/j.commatsci.2012.11.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuum mechanics-based approximation is too often unsatisfactory for solution of real material problems especially in experimental as well as computational fatigue applications. Various methods of classical-deterministic analyses often produce inconclusive or conflicting estimates of the fatigue life of a component. In addition, the classical Griffith-Irwin-Orowan concept that assumed the phenomena based on homeomorphism mathematics cannot be developed any closer to the experimental results anymore. It has already reached its saturation point. This note discusses the fundamental reasons of the limitations of classical fracture mechanics and subsequently predicts alternatives. Application of classical fracture mechanics to engineering problems is discussed along with possible alternatives employing probabilistic and fractal fracture mechanics in materials engineering. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [1] Fractal materials, beams, and fracture mechanics
    Ostoja-Starzewski, Martin
    Li, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (06): : 1194 - 1205
  • [2] Fractal materials, beams, and fracture mechanics
    Martin Ostoja-Starzewski
    Jun Li
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60
  • [3] Probabilistic fracture mechanics by fractal finite element method
    Reddy, R.M.
    Rao, B.N.
    Journal of Structural Engineering (Madras), 2009, 36 (03): : 212 - 225
  • [4] PROBABILISTIC FRACTURE MECHANICS
    BESUNER, PM
    TETELMAN, AS
    NUCLEAR ENGINEERING AND DESIGN, 1977, 43 (01) : 99 - 114
  • [5] Fractal and fracture mechanics analyses of fatigue fracture surfaces of metallic materials
    Sakai, T.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (08): : 2504 - 2508
  • [6] Probabilistic Fracture Mechanics Using Fractal Finite Element Method
    Reddy, R. M.
    Rao, B. N.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 5, 2009, : 237 - 247
  • [7] The fourth mode of fracture in fractal fracture mechanics
    Yavari, A
    Hockett, KG
    Sarkani, S
    INTERNATIONAL JOURNAL OF FRACTURE, 2000, 101 (04) : 365 - 384
  • [8] The fourth mode of fracture in fractal fracture mechanics
    Arash Yavari
    Kevin G. Hockett
    Shahram Sarkani
    International Journal of Fracture, 2000, 101 : 365 - 384
  • [9] Fractal models in fracture mechanics
    Kashtanov, A
    Petrov, Y
    INTERNATIONAL JOURNAL OF FRACTURE, 2004, 128 (1-4) : 271 - 276
  • [10] Discrete fractal fracture mechanics
    Wnuk, Michael P.
    Yavari, Arash
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (05) : 1127 - 1142