Using Random Indexing to improve Singular Value Decomposition for Latent Semantic Analysis

被引:0
|
作者
Sellberg, Linus [1 ]
Jonsson, Arne [1 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci, Santa Anna IT Res Inst AB, SE-58183 Linkoping, Sweden
关键词
D O I
暂无
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
We present results from using Random Indexing for Latent Semantic Analysis to handle Singular Value Decomposition tractability issues. We compare Latent Semantic Analysis, Random Indexing and Latent Semantic Analysis on Random Indexing reduced matrices. In this study we use a corpus comprising 1003 documents from the MEDLINE-corpus. Our results show that Latent Semantic Analysis on Random Indexing reduced matrices provide better results on Precision and Recall than Random Indexing only. Furthermore, computation time for Singular Value Decomposition on a Random Indexing reduced matrix is almost halved compared to Latent Semantic Analysis.
引用
收藏
页码:2335 / 2338
页数:4
相关论文
共 50 条
  • [1] Updating the partial singular value decomposition in latent semantic indexing
    Tougas, Jane E.
    Spiteri, Raymond J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 174 - 183
  • [2] Two uses for updating the partial singular value decomposition in latent semantic indexing
    Tougas, Jane E.
    Spiteri, Raymond J.
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (04) : 499 - 510
  • [3] On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image
    Figuera Vinue, Pau
    Garcia Bringas, Pablo
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (02): : 286 - 296
  • [4] On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image
    Pau Figuera Vinué
    Pablo García Bringas
    Journal of Statistical Theory and Applications, 2020, 19 : 286 - 296
  • [5] Random indexing of text samples for latent semantic analysis
    Kanerva, P
    Kristoferson, J
    Holst, H
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 2000, : 1036 - 1036
  • [6] USING LATENT SEMANTIC INDEXING TO IMPROVE COMPONENT IDENTIFICATION
    Liu, Feng
    Liu, Chao
    INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2009, : 59 - 63
  • [7] LATENT SEMANTIC INDEXING USING MULTIRESOLUTION ANALYSIS
    Jaber, Tareq
    Amira, Abbes
    Milligan, Peter
    PECCS 2011: PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON PERVASIVE AND EMBEDDED COMPUTING AND COMMUNICATION SYSTEMS, 2011, : 327 - 332
  • [8] Using Latent Semantic Indexing to Improve the Accuracy of Document Clustering
    Zhan, Jiaming
    Loh, Han Tong
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2007, 6 (03) : 181 - 188
  • [9] INDEXING BY LATENT SEMANTIC ANALYSIS
    DEERWESTER, S
    DUMAIS, ST
    FURNAS, GW
    LANDAUER, TK
    HARSHMAN, R
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1990, 41 (06): : 391 - 407
  • [10] Hybrid Latent Semantic Analysis and Random Indexing Model for Text Summarization
    Chatterjee, Niladri
    Yadav, Nidhika
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR COMPETITIVE STRATEGIES, 2019, 40 : 149 - 156