Prediction of experimental methanol decomposition rates on platinum from first principles

被引:132
|
作者
Kandoi, S [1 ]
Greeley, J [1 ]
Sanchez-Castillo, MA [1 ]
Evans, ST [1 ]
Gokhale, AA [1 ]
Dumesic, JA [1 ]
Mavrikakis, M [1 ]
机构
[1] Univ Wisconsin, Dept Biol & Chem Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
microkinetic; density functional theory; direct methanol fuel cells; catalysis; platinum; methanol decomposition; reaction kinetics; hydrogen production; methanol reforming;
D O I
10.1007/s11244-006-0001-1
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A microkinetic model for methanol decomposition on platinum is presented. The model incorporates competitive decomposition pathways, beginning with both O - H and C - H bond scission in methanol, and uses results from density functional theory (DFT) calculations [Greeley and Mavrikakis, J. Am. Chem. Soc. 124 ( 2002) 7193, Greeley and Mavrikakis, J. Am. Chem. Soc. 126 ( 2004) 3910]. Results from reaction kinetics experiments show that the rate of H-2 production increases with increasing temperature and methanol concentration in the feed and is only nominally affected by the presence of CO or H2 with methanol. The model, based on the values of binding energies, pre-exponential factors and activation energy barriers derived from first principles calculations, accurately predicts experimental reaction rates and orders. The model also gives insight into the most favorable reaction pathway, the rate-limiting step, the apparent activation energy, coverages, and the effects of pressure. It is found that the pathway beginning with the C - H bond scission (CH3OH --> H2COH --> HCOH --> CO) is dominant compared with the path beginning with O - H bond scission. The cleavage of the first C - H bond in methanol is the rate-controlling step. The surface is highly poisoned by CO, whereas COH appears to be a spectator species.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [1] Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles
    Shampa Kandoi
    Jeff Greeley
    Marco A. Sanchez-Castillo
    Steven T. Evans
    Amit A. Gokhale
    James A. Dumesic
    Manos Mavrikakis
    Topics in Catalysis, 2006, 37 : 17 - 28
  • [2] Methanol chemistry on platinum surfaces: A first-principles analysis
    Mavrikakis, M
    Greeley, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U775 - U775
  • [3] First principles prediction of protein folding rates
    Debe, DA
    Goddard, WA
    JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (03) : 619 - 625
  • [4] A first-principles study of methanol decomposition on Pt(111)
    Greeley, J
    Mavrikakis, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (24) : 7193 - 7201
  • [5] METHANOL DECOMPOSITION ON PLATINUM (111)
    SEXTON, BA
    SURFACE SCIENCE, 1981, 102 (01) : 271 - 281
  • [6] Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach
    Cao, D
    Lu, GQ
    Wieckowski, A
    Wasileski, SA
    Neurock, M
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23): : 11622 - 11633
  • [7] Decomposition and Oxidation of Methanol on Ir(111): A First-Principles Study
    Wang, Hui
    He, Chao-zheng
    Huai, Li-yuan
    Liu, Jing-yao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (09): : 4574 - 4584
  • [8] Methanol in microporous materials from first principles
    Gale, JD
    Shah, R
    Payne, MC
    Stich, I
    Terakura, K
    CATALYSIS TODAY, 1999, 50 (3-4) : 525 - 532
  • [9] Discrepancy between experimental and theoretical β-decay rates resolved from first principles
    P. Gysbers
    G. Hagen
    J. D. Holt
    G. R. Jansen
    T. D. Morris
    P. Navrátil
    T. Papenbrock
    S. Quaglioni
    A. Schwenk
    S. R. Stroberg
    K. A. Wendt
    Nature Physics, 2019, 15 : 428 - 431
  • [10] Discrepancy between experimental and theoretical β-decay rates resolved from first principles
    Gysbers, P.
    Hagen, G.
    Holt, J. D.
    Jansen, G. R.
    Morris, T. D.
    Navratil, P.
    Papenbrock, T.
    Quaglioni, S.
    Schwenk, A.
    Stroberg, S. R.
    Wendt, K. A.
    NATURE PHYSICS, 2019, 15 (05) : 428 - +