Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries

被引:129
|
作者
Kim, Il Tae [1 ]
Magasinski, Alexandre [1 ]
Jacob, Karl [1 ]
Yushin, Gleb [1 ]
Tannenbaum, Rina [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Univ Alabama Birmingham, Dept Biomed Engn, Sch Med, Birmingham, AL 35294 USA
[3] Univ Alabama Birmingham, UAB Comprehens Canc Ctr, Birmingham, AL 35294 USA
关键词
ONE-POT SYNTHESIS; HIGH-CAPACITY; LI STORAGE; OXIDE; NANOSHEETS; HYBRID; NANOSTRUCTURES; REDUCTION;
D O I
10.1016/j.carbon.2012.09.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reduced graphene oxide (rGO) tethered with maghemite (gamma-Fe2O3) was synthesized using a novel modified sol-gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed gamma-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g(-1) at current density of 500 mA g(-1) and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g(-1) after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g(-1) at 10C (similar to 10,000 mA g(-1)). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 50 条
  • [1] Facile synthesis of germanium-reduced graphene oxide composite as anode for high performance lithium-ion batteries
    Zhong, Xiongwu
    Wang, Jiaqing
    Li, Weihan
    Liu, Xiaowu
    Yang, Zhenzhong
    Gu, Lin
    Yu, Yan
    RSC ADVANCES, 2014, 4 (102): : 58184 - 58189
  • [2] Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries
    Tao, Hua-Chao
    Yang, Xue-Lin
    Zhang, Lu-Lu
    Ni, Shi-Bing
    IONICS, 2015, 21 (03) : 617 - 622
  • [3] Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries
    Hua-Chao Tao
    Xue-Lin Yang
    Lu-Lu Zhang
    Shi-Bing Ni
    Ionics, 2015, 21 : 617 - 622
  • [4] A ZnS nanocrystal/reduced graphene oxide composite anode with enhanced electrochemical performances for lithium-ion batteries
    Feng, Yan
    Zhang, Yuliang
    Wei, Yuzhen
    Song, Xiangyun
    Fub, Yanbo
    Battaglia, Vincent S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (44) : 30630 - 30642
  • [5] Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries
    Park, Jae-Sang
    Jo, Jae-Hyeon
    Yashiro, Hitoshi
    Kim, Sung-Soo
    Kim, Sun-Jae
    Sun, Yang-Kook
    Myung, Seung-Taek
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) : 25941 - 25951
  • [6] Synthesis and electrochemical performance of CoO/graphene nanocomposite as anode for lithium ion batteries
    Zhang, Mei
    Jia, Mengqiu
    Jin, Yuhong
    Shi, Xiangrui
    APPLIED SURFACE SCIENCE, 2012, 263 : 573 - 578
  • [7] Facile Synthesis of Crumpled Graphene Oxide and Its Outstanding Electrochemical Performance as an Anode in Lithium Ion Batteries
    Seunghyun Song
    Seyeon Jung
    Seulgi Lee
    Heonsoo Park
    Churl Seung Lee
    Joonho Bae
    Journal of Electronic Materials, 2023, 52 : 877 - 886
  • [8] Facile Synthesis of Crumpled Graphene Oxide and Its Outstanding Electrochemical Performance as an Anode in Lithium Ion Batteries
    Song, Seunghyun
    Jung, Seyeon
    Lee, Seulgi
    Park, Heonsoo
    Lee, Churl Seung
    Bae, Joonho
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) : 877 - 886
  • [9] Electrochemical Properties of Tin Oxide Flake/Reduced Graphene Oxide/Carbon Composite Powders as Anode Materials for Lithium-Ion Batteries
    Lee, Su Min
    Choi, Seung Ho
    Kang, Yun Chan
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (46) : 15203 - 15207
  • [10] Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries
    Cao, Huaqiang
    Li, Baojun
    Zhang, Jingxian
    Lian, Fang
    Kong, Xianghua
    Qu, Meizhen
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) : 9759 - 9766