Acceleration Signal Categorization Using Support Vector Machines

被引:4
|
作者
Davis, B. T. [1 ]
Caicedo, J. M. [2 ]
Hirth, V. A. [3 ]
Easterling, B. M. [4 ]
机构
[1] Adv Smart Syst & Evaluat Technol LLC, 1400 Laurel St,Suite 1B, Columbia, SC 29201 USA
[2] Univ South Carolina, Dept Civil & Environm Engn, SDII Lab, 300 Main St, Columbia, SC 29201 USA
[3] Palmetto Hlth USC Med Grp, Senior Care Primary Practice, 3010 Farrow Rd Suite 300, Columbia, SC 29203 USA
[4] William Jennings Bryan Dorn Vet Adm Med Ctr, 6439 Garners Ferry Rd, Columbia, SC 29209 USA
基金
美国国家科学基金会;
关键词
Acceleration signal; Support vector machine; NaN density; Maximum amplitude difference ratio; Rate of dispersion; Dispersion ratio;
D O I
10.1007/s40799-019-00318-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Large sensor installations are becoming prominent as the cost of sensors drop and new methods are developed for structural health monitoring, fall detection, building occupancy, etc. Large amounts of data could be quickly captured, especially for measurements of high sampling rate such as acceleration signals. Methods to quickly triage records for further analysis can be used to drastically reduce the amount of data to be process. This paper studies the use of Support Vector Machines to classify floor vibration signals to determine signals of interest. Four kernels and three signal metrics were explored in this research using a human activity dataset containing over 500,000 acceleration records. Results show that the Radial Basis Function using a Dispersion Ratio metric can be used to identify signals of interest effectively.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 50 条
  • [1] Acceleration Signal Categorization Using Support Vector Machines
    B. T. Davis
    J. M. Caicedo
    V. A. Hirth
    B. M. Easterling
    Experimental Techniques, 2019, 43 : 359 - 368
  • [2] Document categorization using support vector machines
    Villasana, Sergio
    Seijas, Cesar
    Caralli, Antonino
    Jimenez, Jesus
    Pacheco, Jose
    INGENIERIA UC, 2008, 15 (03): : 45 - 52
  • [3] Video Genre Categorization Using Support Vector Machines
    Dammak, Nouha
    BenAyed, Yassine
    2014 1ST INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP 2014), 2014, : 106 - 110
  • [4] Support vector machines for spam categorization
    Drucker, H
    Wu, DH
    Vapnik, VN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1048 - 1054
  • [5] Feature selection for scene categorization using support vector machines
    Devendran, V
    Thiagarajan, Hemalatha
    Santra, A. K.
    Wahi, Amitabh
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 1, PROCEEDINGS, 2008, : 588 - +
  • [6] On signal detection using support vector machines
    Burian, A
    Takala, J
    SCS 2003: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 609 - 612
  • [7] Using Support Vector Machines as Learning Algorithm for Video Categorization
    Manuel Perea-Ortega, Jose
    Montejo-Raez, Arturo
    Teresa Martin-Valdivia, Maria
    Alfonso Urena-Lopez, L.
    MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 373 - 376
  • [8] Color photo categorization using compressed histograms and support vector machines
    Feng, X
    Fang, JZ
    Qiu, GP
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 753 - 756
  • [9] SVM categorizer: A generic categorization tool using support vector machines
    Kapoutsis, E
    Theodoulidis, B
    Saraee, M
    IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 1109 - 1112
  • [10] Nonstationary signal classification using support vector machines
    Gretton, A
    Davy, M
    Doucet, A
    Rayner, PJW
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 305 - 308