A Balanced Phase Field Model for Active Contours

被引:0
|
作者
Molnar, Jozsef [1 ]
Tasnadi, Ervin [1 ]
Horvath, Peter [1 ,2 ]
机构
[1] Hungarian Acad Sci, Biol Res Ctr, Szeged, Hungary
[2] Univ Helsinki, Inst Mol Med Finland, Helsinki, Finland
关键词
LEVEL SET EVOLUTION;
D O I
10.1007/978-3-030-22368-7_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a balanced phase field model that eliminates the often undesired curvature-dependent shrinking of the zero level set, while maintaining the smooth interface necessary to calculate fundamental quantities such as the normal vector or the curvature of the represented contour. The proposed model extends the Ginzburg-Landau phase field energy with a higher order smoothness term. The relative weights are determined with the analysis of the level set motion in a curvilinear system adapted to the zero level set. The proposed level set framework exhibits strong shape maintaining capability without significant interference with the active (e.g. a segmentation) model.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 50 条
  • [1] Phase field models and higher-order active contours
    Rochery, M
    Jermyn, I
    Zerubia, J
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 970 - 976
  • [2] Improved Compound Vector Field Based Active Contours Model
    Gao, Yang
    Chen, Wufan
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 2140 - 2144
  • [3] Active contours using a potential field
    Honea, DM
    Snyder, WE
    Bilbro, G
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 757 - 760
  • [4] TENSOR VECTOR FIELD BASED ACTIVE CONTOURS
    Kumar, Abhishek
    Wong, Alexander
    Mishra, Akshaya
    Clausi, David A.
    Fieguth, Paul
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [5] Boundary vector field for parametric active contours
    Sum, K. W.
    Cheung, Paul Y. S.
    PATTERN RECOGNITION, 2007, 40 (06) : 1635 - 1645
  • [6] A charged geometric model for active contours
    Yang, Ronghua
    Mirmehdi, Majid
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 183 - +
  • [7] Anisotropic virtual electric field for active contours
    Zhu, Guopu
    Zhang, Shuqun
    Zeng, Qingshuang
    Wang, Changhong
    PATTERN RECOGNITION LETTERS, 2008, 29 (11) : 1659 - 1666
  • [8] Convex Active Contours with Locally Bias Field Estimator
    Khan, Muhammad Salim
    Ali, Haider
    Badshah, Noor
    Khan, Gohar Ayub
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (10): : 81 - 114
  • [9] Digital Deformable Model Simulating Active Contours
    de Vieilleville, Francois
    Lachaud, Jacques-Olivier
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2009, 5810 : 203 - +
  • [10] Extension of the virtual electric field model using bilateral-like filter for active contours
    Shoujun Zhou
    Yao Lu
    Nana Li
    Yuanquan Wang
    Signal, Image and Video Processing, 2019, 13 : 1131 - 1139