Self-Powered, Electrochemical Carbon Nanotube Pressure Sensors for Wave Monitoring

被引:42
|
作者
Zhang, Mengmeng [1 ]
Fang, Shaoli [2 ]
Nie, Jun [3 ]
Fei, Peng [3 ]
Aliev, Ali E. [2 ]
Baughman, Ray H. [2 ]
Xu, Ming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75080 USA
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotubes; electrochemical sensing; pressure sensors; self-powered sensors; wave monitoring; ENERGY; TRANSPARENT; SINGLE; SEA; TEMPERATURE;
D O I
10.1002/adfm.202004564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Underwater pressure sensors with high sensitivity over a broad pressure range are urgently required for the collection of valuable data on pressure changes associated with various wave motions. Here, a class of carbon-nanotube-based pressure sensors, which can be directly used in oceans without packaging, is reported. They use salt water as an electrolyte for electrochemically converting mechanical hydraulic energy into electrical energy and generating electrical signals in response to pressure changes in seawater. They can sense wave amplitudes from 1 mm (i.e., 10 Pa) to 30 m, which covers the range of almost all wave motions, and provide high stability during cycling in seawater. Also, they are self-powered and provide harvested gravimetric energy that is six orders of magnitude higher than that for commercial piezoelectric sensors for frequencies below 2 Hz (the range within most wave motion occurs), which has not been achieved before. These self-powered sensors operate from 4 to 60 degrees C and in direct contact with salt water having a wide range of salinities (from 0.1 to 5 mol L-1). Importantly, the unique electrochemical mechanism provides a new pressure sensing strategy to address the challenges in realizing high precision, low-frequency pressure measurements, and a broad detection range.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-powered electrochemical sensors
    del Campo, Francisco Javier
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 41
  • [2] Self-Powered Sensors for Monitoring of Highway Bridges
    Sazonov, Edward
    Li, Haodong
    Curry, Darrell
    Pillay, Pragasen
    IEEE SENSORS JOURNAL, 2009, 9 (11) : 1422 - 1429
  • [3] Advances in self-powered triboelectric pressure sensors
    Lei, Hao
    Chen, Yunfeng
    Gao, Zhenqiu
    Wen, Zhen
    Sun, Xuhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (36) : 20100 - 20130
  • [4] Research Progress of Wearable Self-Powered Electrochemical Sensors
    Song, Zhong-Qian
    Li, Wei-Yan
    Bao, Yu
    Liu, Zhen-Bang
    Sun, Zhong-Hui
    Niu, Li
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2023, 51 (05) : 769 - 776
  • [5] Self-powered sensors
    Arechederra, Robert L.
    Minteer, Shelley D.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2011, 400 (06) : 1605 - 1611
  • [6] Self-powered sensors
    Noriaki Horiuchi
    Nature Photonics, 2018, 12 : 644 - 644
  • [7] Self-powered sensors
    Horiuchi, Noriaki
    NATURE PHOTONICS, 2018, 12 (11) : 644 - 644
  • [8] Self-powered sensors
    Robert L. Arechederra
    Shelley D. Minteer
    Analytical and Bioanalytical Chemistry, 2011, 400 : 1605 - 1611
  • [9] Self-Powered Wireless Corrosion Monitoring Sensors and Networks
    Yu, Yan
    Qiao, Guofu
    Ou, Jinping
    IEEE SENSORS JOURNAL, 2010, 10 (12) : 1901 - 1902
  • [10] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501