Distribution-free estimation of heteroskedastic binary response models in Stata

被引:5
|
作者
Blevins, Jason R. [1 ]
Khan, Shakeeb [2 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Duke Univ, Durham, NC USA
来源
STATA JOURNAL | 2013年 / 13卷 / 03期
关键词
st0310; dfbr; binary response; heteroskedasticity; nonlinear least squares; semiparametric estimation; sieve estimation; MAXIMUM SCORE ESTIMATOR;
D O I
10.1177/1536867X1301300309
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we consider two recently proposed semiparametric estimators for distribution-free binary response models under a conditional median restriction. We show that these estimators can be implemented in Stata by using the n1 command through simple modifications to the nonlinear least-squares probit criterion function. We then introduce dfbr, a new Stata command that implements these estimators, and provide several examples of its usage. Although it is straightforward to carry out the estimation with n1, the dfbr implementation uses Mata for improved performance and robustness.
引用
收藏
页码:588 / 602
页数:15
相关论文
共 50 条