Toward Unifying the Mechanistic Concepts in Electrochemical CO2 Reduction from an Integrated Material Design and Catalytic Perspective

被引:38
|
作者
Bagchi, Debabrata [1 ,2 ]
Roy, Soumyabrata [1 ,2 ]
Sarma, Saurav Ch [1 ,2 ]
Peter, Sebastian C. [1 ,2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Sch Adv Mat, Bangalore 560064, Karnataka, India
关键词
catalyst designs; CO; (2) reduction reactions; electrocatalyses; reaction mechanisms; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE REDUCTION; DEPENDENT ELECTROCATALYTIC REDUCTION; COVALENT ORGANIC FRAMEWORKS; HIGH FARADAIC EFFICIENCY; N-DOPED CARBON; IN-SITU TEM; HIGHLY EFFICIENT; SELECTIVE ELECTROREDUCTION; PRODUCT SELECTIVITY;
D O I
10.1002/adfm.202209023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic CO2 reduction (eCO(2)RR) is one of the avenues with most potential toward achieving sustainable energy economy and global climate change targets by harvesting renewable energy into value-added fuels and chemicals. From an industrial standpoint, eCO(2)RR provides specific advantages over thermochemical and photochemical pathways in terms of much broader product scope, high product specificity, and easy adaptability to the renewable electricity infrastructure. However, unlike water electrolyzers, the lack of suitable cathode materials for eCO(2)RR impedes its commercialization due to material design challenges. The current state-of-the-art catalysts in eCO(2)RR suffer largely from low reaction rates, insufficient C2+ product selectivity, high overpotentials, and industrial-scale stability. Overcoming the scientific and applied technical hurdles for commercial realization demands a holistic integration of catalytic designs, deep mechanistic understanding, and efficient process engineering. Special emphasis on mechanistic understanding and performance outcome is sought to guide the future design of eCO(2)RR catalysts that can play a significant role in closing the anthropogenic carbon loop. This article provides an integrative approach to understand principles of robust eCO(2)RR catalyst design superimposed with underlying mechanistic projections which strongly depend on experimental conditions viz. choice of electrolyte, reactor and membrane design, pH of the solvent, and partial pressure of the CO2.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Electrochemical CO2 reduction to ethanol: from mechanistic understanding to catalyst design
    Nguyen, Tu N.
    Guo, Jiaxun
    Sachindran, Ashwini
    Li, Fengwang
    Seifitokaldani, Ali
    Cao-Thang Dinh
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (21) : 12474 - 12494
  • [2] Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design
    Kibria, Md Golam
    Edwards, Jonathan P.
    Gabardo, Christine M.
    Cao-Thang Dinh
    Seifitokaldani, Ali
    Sinton, David
    Sargent, Edward H.
    ADVANCED MATERIALS, 2019, 31 (31)
  • [3] Toward the Mechanistic Understanding of Enzymatic CO2 Reduction
    Oliveira, Ana Rita
    Mota, Cristiano
    Mourato, Claudia
    Domingos, Renato M.
    Santos, Marino F. A.
    Gesto, Diana
    Guigliarelli, Bruno
    Santos-Silva, Teresa
    Romao, Maria Joao
    Cardoso Pereira, Ines A.
    ACS CATALYSIS, 2020, 10 (06) : 3844 - 3856
  • [4] Electrochemical CO2 Reduction at Silver from a Local Perspective
    Zhu, Xinwei
    Huang, Jun
    Eikerling, Michael
    ACS CATALYSIS, 2021, 11 (23) : 14521 - 14532
  • [5] ELECTROCHEMICAL AND MECHANISTIC STUDIES OF [RE(CO)3(DMBPY)CL] AND THEIR RELATION TO THE CATALYTIC REDUCTION OF CO2
    BREIKSS, AI
    ABRUNA, HD
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 201 (02): : 347 - 358
  • [6] A Short Perspective on Electrochemical CO2 Reduction to CO
    Tarrago, Maxime
    Ye, Shengfa
    CHIMIA, 2020, 74 (06) : 478 - 482
  • [7] Integrated electrochemical CO2 reduction and hydroformylation
    Jolly, Brandon J.
    Pung, Michael J.
    Liu, Chong
    DALTON TRANSACTIONS, 2024, 53 (47) : 18834 - 18838
  • [8] Electrochemical reduction of captured CO2: A route toward the integrated carbon capture and utilization
    Kim, Seoni
    Shin, Hyejung
    Kang, Jin Soo
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 40
  • [9] Progress of mechanistic pathways involved in electrochemical CO2 reduction
    Duanmu, Jing-Wen
    Yang, Xue-Peng
    Gao, Fei-Yue
    Atapour, Masoud
    Gao, Min-Rui
    JOURNAL OF ENERGY CHEMISTRY, 2025, 102 : 745 - 767
  • [10] Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2
    Karamad, Mohammadreza
    Hansen, Heine A.
    Rossmeisl, Jan
    Norskov, Jens K.
    ACS CATALYSIS, 2015, 5 (07): : 4075 - 4081