A Quantum Version of the Algebra of Distributions of SL2

被引:1
|
作者
Angiono, Ivan [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, CIEM, FaMAF, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
关键词
Pointed Hopf algebras; Frobenius-Lusztig kernels; algebras of distributions; HOPF-ALGEBRAS;
D O I
10.4171/PRIMS/54-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a primitive root of unity of order. We introduce a family of finite-dimensional algebras {D-lambda,D-N(sl(2))}(N is an element of N0) over the complex numbers, such that D-lambda,D-N (sl(2)) is a subalgebra of D-lambda,D-M(sl(2)) if N < M, and D-lambda,D-N-1(sl(2)) subset of D-lambda,D-N(sl(2)) is a u(lambda)(sl(2))-cleft extension. The simple D-lambda,D-N(sl(2))-modules (L-N(p))(0 <= p<l)(N+perpendicular to), are highest weight modules, which admit a tensor product decomposition: the first factor is a simple u(lambda)(sl(2))-module and the second factor is a simple D-lambda,D-N-1 (sl(2))-module. This factorization resembles the corresponding Steinberg decomposition, and the family of algebras resembles the presentation of the algebra of distributions of SL2 as a filtration by finite-dimensional subalgebras.
引用
收藏
页码:141 / 161
页数:21
相关论文
共 50 条