Density of half-horocycles on geometrically infinite hyperbolic surfaces

被引:0
|
作者
Schapira, Barbara [1 ]
机构
[1] Univ Picardie Jules Verne, UMR CNRS 6140, LAMFA, F-80000 Amiens, France
关键词
D O I
10.1017/S0143385712000156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the unit tangent bundle of a hyperbolic surface, we study the density of positive orbits (h(s) v)(s >= 0) under the horocyclic flow. More precisely, given a full orbit (h(s) v)(s is an element of R), we prove that under a weak assumption on the vector v, both half-orbits (h(s) v)(s >= 0) and (h(s) v)(s <= 0), are simultaneously dense or not in the non-wandering set epsilon of the horocyclic flow. We give also a counterexample to this result when this assumption is not satisfied.
引用
收藏
页码:1162 / 1177
页数:16
相关论文
共 50 条