Gene expression-based modeling of human cortical synaptic density

被引:28
|
作者
Goyal, Manu S. [1 ]
Raichle, Marcus E. [1 ]
机构
[1] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
关键词
brain development; synaptic plasticity; brain gene expression; CEREBRAL-BLOOD-FLOW; VISUAL-CORTEX; METABOLISM; NEURONS; SYNAPTOGENESIS; TRANSCRIPTOME; PLASTICITY; INHIBITOR; SYNAPSES;
D O I
10.1073/pnas.1303453110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Postnatal cortical synaptic development is characterized by stages of exuberant growth, pruning, and stabilization during adulthood. How gene expression orchestrates these stages of synaptic development is poorly understood. Here we report that synaptic growth-related gene expression alone does not determine cortical synaptic density changes across the human lifespan, but instead, the dynamics of cortical synaptic density can be accurately simulated by a first-order kinetic model of synaptic growth and elimination that incorporates two separate gene expression patterns. Surprisingly, modeling of cortical synaptic density is optimized when genes related to oligodendrocytes are used to determine synaptic elimination rates. Expression of synaptic growth and oligodendrocyte genes varies regionally, resulting in different predictions of synaptic density among cortical regions that concur with previous regional data in humans. Our analysis suggests that modest rates of synaptic growth persist in adulthood, but that this is counterbalanced by increasing rates of synaptic elimination, resulting in stable synaptic number and ongoing synaptic turnover in the human adult cortex. Our approach provides a promising avenue for exploring how complex interactions among genes may contribute to neurobiological phenomena across the human lifespan.
引用
收藏
页码:6571 / 6576
页数:6
相关论文
共 50 条
  • [1] ARC AND TRKB EXPRESSION IN HUMAN CORTICAL POST-SYNAPTIC DENSITY EXTRACTS
    Toro, C.
    Matas, E.
    Alexandre, R.
    JOURNAL OF PSYCHOPHARMACOLOGY, 2011, 25 (08) : A10 - A10
  • [2] Gender differences in human cortical synaptic density
    Alonso-Nanclares, L.
    Gonzalez-Soriano, J.
    Rodriguez, J. R.
    DeFelipe, J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) : 14615 - 14619
  • [3] Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts
    Tucker, James D.
    Joiner, Michael C.
    Thomas, Robert A.
    Grever, William E.
    Bakhmutsky, Marina V.
    Chinkhota, Chantelle N.
    Smolinski, Joseph M.
    Divine, George W.
    Auner, Gregory W.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 88 (04): : 933 - 939
  • [4] Assisted gene expression-based clustering with AWNCut
    Li, Yang
    Bie, Ruofan
    Hidalgo, Sebastian J. Teran
    Qin, Yichen
    Wu, Mengyun
    Ma, Shuangge
    STATISTICS IN MEDICINE, 2018, 37 (29) : 4386 - 4403
  • [5] A gene expression-based mathematical modeling approach for breast cancer tumor growth and shrinkage
    Saribudak A.
    Gundry S.
    Zou J.
    Uyar M.Ü.
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2015, 4 (01) : 1 - 13
  • [6] Feature (gene) selection in gene expression-based tumor classification
    Xiong, MM
    Li, WJ
    Zhao, JY
    Jin, L
    Boerwinkle, E
    MOLECULAR GENETICS AND METABOLISM, 2001, 73 (03) : 239 - 247
  • [7] Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions
    Zhang, Ting-He
    Hasib, Md Musaddaqul
    Chiu, Yu-Chiao
    Han, Zhi-Feng
    Jin, Yu-Fang
    Flores, Mario
    Chen, Yidong
    Huang, Yufei
    CANCERS, 2022, 14 (19)
  • [8] Computational methods for gene expression-based tumor classification
    Xiong, MM
    Jin, L
    Li, WJ
    Boerwinkle, E
    BIOTECHNIQUES, 2000, 29 (06) : 1264 - +
  • [9] Gene expression-based drug repurposing to target aging
    Donertas, Handan Melike
    Valenzuela, Matias Fuentealba
    Partridge, Linda
    Thornton, Janet M.
    AGING CELL, 2018, 17 (05)
  • [10] Gene expression-based prediction of pazopanib benefit in sarcomas
    Lassmann, A.
    Heilig, C. E.
    Mughal, S. S.
    Pirmann, S.
    Mock, A.
    Andresen, C.
    Aybey, B.
    Bauer, S.
    Brandts, C.
    Horak, P.
    Lipka, D.
    Kreutzfeldt, S.
    Teleanu, M. V.
    Heining, C.
    Brors, B.
    Glimm, H.
    Huebschmann, D.
    Froehling, S.
    ANNALS OF ONCOLOGY, 2021, 32 : S1117 - S1117