Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors

被引:389
|
作者
Zhang, Qing [1 ]
Han, Kuihua [1 ]
Li, Shijie [1 ]
Li, Ming [1 ]
Li, Jinxiao [1 ]
Ren, Ke [1 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China
关键词
ACTIVATED CARBON; HIGH-POWER; CAPACITANCE; FIBERS; CARBONIZATION; NANOMATERIALS; NANOCRYSTALS; ADSORPTION; ELECTRODES; NANOSHEETS;
D O I
10.1039/c7nr07158b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A three-dimensional hierarchical porous carbon is synthesized via a facile chemical activation route with garlic skin as the precursor and KOH as the activating agent. The as-obtained carbon presents a high specific surface area of 2818 m(2) g(-1) and a hierarchical porous architecture containing macroporous frameworks, mesopores (2-4 nm), and micropores (0.6-1.0 nm). As the electrode material for a supercapacitor, due to its unique interconnected porous structure, this garlic skin-derived carbon exhibits excellent electrochemical performance and cycling stability. At a current density of 0.5 A g(-1), the capacitance is up to 427 F g(-1) (162 F cm(-3)). Even at a high current density of 50 A g(-1), the capacitance can be maintained to a high value of 315 F g(-1) (120 F cm(-3)). After charging-discharging at a current density of 4.5 A g(-1) for 5000 cycles, the capacitance retention is as high as 94%. The results suggest that this garlic skin-derived 3D hierarchical porous carbon is a promising electrode material for high-performance supercapacitors.
引用
收藏
页码:2427 / 2437
页数:11
相关论文
共 50 条
  • [1] Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors
    Qie, Long
    Chen, Weimin
    Xu, Henghui
    Xiong, Xiaoqin
    Jiang, Yan
    Zou, Feng
    Hu, Xianluo
    Xin, Ying
    Zhang, Zhaoliang
    Huang, Yunhui
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2497 - 2504
  • [2] Polystyrene-MOF-Derived 3D Hierarchical Porous Carbon for High-Performance Supercapacitors
    Kumar, Nitish
    Pathak, Prakash Kumar
    Bansal, Neetu
    Ahamad, Tansir
    Park, Changyong
    Ahn, Heejoon
    Salunkhe, Rahul R.
    CHEMISTRY-AN ASIAN JOURNAL, 2025, 20 (04)
  • [3] Facile 3D Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Supercapacitors
    Cai, Jiangtao
    Hou, Liuhua
    Chen, Chen
    Lan, Yujin
    Dang, Yongqiang
    Zhu, Youyu
    Zhang, Jianlan
    Zhao, Shiyong
    Zhang, Yating
    ENERGY TECHNOLOGY, 2022, 10 (10)
  • [4] Lignin-derived hierarchical porous carbon for high-performance supercapacitors
    Zhen-zhen Chang
    Bao-jun Yu
    Cheng-yang Wang
    Journal of Solid State Electrochemistry, 2016, 20 : 1405 - 1412
  • [5] Lignin-derived hierarchical porous carbon for high-performance supercapacitors
    Chang, Zhen-zhen
    Yu, Bao-jun
    Wang, Cheng-yang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (05) : 1405 - 1412
  • [6] Ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors
    Teng, Zhaocai
    Han, Kuihua
    Li, Jinxiao
    Gao, Yang
    Li, Ming
    Ji, Tongtong
    ULTRASONICS SONOCHEMISTRY, 2020, 60
  • [7] High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors
    Li-Zhen Fan
    Tian-Tian Chen
    Wei-Li Song
    Xiaogang Li
    Shichao Zhang
    Scientific Reports, 5
  • [8] High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors
    Fan, Li-Zhen
    Chen, Tian-Tian
    Song, Wei-Li
    Li, Xiaogang
    Zhang, Shichao
    SCIENTIFIC REPORTS, 2015, 5
  • [9] Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors
    Wang, Chao
    Wang, Xianfen
    Lu, Hao
    Li, Hongliang
    Zhao, X. S.
    CARBON, 2018, 140 : 139 - 147
  • [10] NiCo2S4 combined 3D hierarchical porous carbon derived from lignin for high-performance supercapacitors
    Li, Jiajun
    Yang, Junyu
    Wang, Peiru
    Cong, Ziyang
    Shi, Feiyan
    Wei, Li
    Wang, Kai
    Tong, Yao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 232