Integral polynomial sequences arising from matrix powers of order 2

被引:0
|
作者
Cheon, Gi-Sang [1 ]
Lim, Yongdo [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Matrix power; Palindromic polynomial; Weighted Delannoy number; Mirrored Gamma-matrix; Recursive system; Hypergeometric function; Jacobi polynomial;
D O I
10.1016/j.laa.2012.07.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a recursive system of integers {chi (n, k) : n > k >= 0}; {chi(n + 2, k) = chi(n + 1, k) - chi(n + 1, k - 1) +2 chi (n, k - 1) chi(k + 1, k) = -chi(k, k - 1) which is uniquely determined by the initial values {chi (n, 0)}(n=1)(infinity). We show under the constant initial dates chi (n, 0) = chi (1, 0) for all n that the polynomial chi(n) (x) = Sigma(n-1)(k=0) x (n, k)x(k) of degree n - 1 is (anti) palindromic. Several explicit formulae for x (n, k) via Vander-monde matrix, mirrored Gamma-matrix, weighed Delannoy number, Riordan array, hypergeometric function, Jacobi polynomial, and some combinatorial identities are derived. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 50 条