Tilings of the regular N-gon with triangles of angles π/N, π/N, (N-2)π/N for N=5, 8, 10 and 12

被引:1
|
作者
Laczkovich, M.
机构
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2021年 / 92卷 / 92期
关键词
Tilings with triangles; Regular polygons; POLYGONS;
D O I
10.1016/j.comgeo.2020.101690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a triangle T tiles a polygon A, if A can be dissected into finitely many nonoverlapping triangles similar to T. We are concerned with the question whether the triangle of angles pi /N, pi/N, (N - 2)pi/N tiles the regular N-gon. It is easy to see that if N = 3, 4 or 6, then the answer is affirmative. We show the same in the cases N = 5, 8, 10 and 12. (c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A series of coverings of the regular n-gon
    Finster, Myriam
    GEOMETRIAE DEDICATA, 2011, 155 (01) : 191 - 214
  • [2] A series of coverings of the regular n-gon
    Myriam Finster
    Geometriae Dedicata, 2011, 155 : 191 - 214
  • [3] Inscribing a regular m-gon in a regular n-gon
    Dilworth, S.
    Mane, S.
    JOURNAL OF GEOMETRY, 2010, 97 (1-2) : 59 - 67
  • [4] THE N-GON IS NOT A LOCAL MINIMUM OF U(2)I FOR N >= 7
    Woerner, Kevin D. P.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (04): : 413 - 421
  • [5] THE ASSOCIAHEDRON AND TRIANGULATIONS OF THE N-GON
    LEE, CW
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (06) : 551 - 560
  • [6] RANDOM INSCRIBED N-GON
    LITTLE, JG
    RUEHR, OG
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09): : 1071 - 1072
  • [7] Periodic points on the regular and double n-gon surfaces
    Apisa, Paul
    Saavedra, Rafael M.
    Zhang, Christopher
    GEOMETRIAE DEDICATA, 2022, 216 (06)
  • [8] Periodic points on the regular and double n-gon surfaces
    Paul Apisa
    Rafael M. Saavedra
    Christopher Zhang
    Geometriae Dedicata, 2022, 216
  • [9] On the smallest area (n-1)-gon containing a convex n-gon
    Hong, David E.
    Ismailescu, Dan
    Kwak, Alex
    Park, Grace Y.
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (02) : 394 - 403
  • [10] All-mass n-gon integrals in n dimensions
    Bourjaily, Jacob L.
    Gardi, Einan
    McLeod, Andrew J.
    Vergu, Cristian
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)