Genetic algorithm for parallel-machine batching and scheduling to minimize total weighted tardiness

被引:0
|
作者
Chou, Fuh-Der [1 ]
Wang, Hui-Mei [2 ]
机构
[1] Ching Yun Univ, Dept Ind Engn & Management, Jhongli, Taiwan
[2] Vanung Univ, Dept Mangement & Informat Technol, Jhongli, Taiwan
关键词
parallel batch-processing machines; total weighted tardiness; genetic algorithm; INCOMPATIBLE JOB FAMILIES; PROCESSING MACHINES; MAKESPAN;
D O I
10.4028/www.scientific.net/AMM.58-60.1142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers parallel batch-processing machine problems with compatible job family, dynamic job arrivals, and non-identical job sizes to minimize total weighted tardiness. Given that the problem of interest is non-deterministic polynomial-time (NP) hard, we propose a hybrid genetic algorithm (HGA) that incorporates batching decision and batch scheduling. Moreover, HGA is compared with simulated annealing (SA) algorithms to assess the performance of the proposed algorithm. Computational results revealed that the proposed HGA outperformed in terms of the number of best solution found, and HGA is slightly better when comparing the average TWT value.
引用
收藏
页码:1142 / +
页数:2
相关论文
共 50 条