Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network

被引:257
|
作者
Cai, Baoping [1 ]
Liu, Yonghong [1 ]
Fan, Qian [1 ]
Zhang, Yunwei [1 ]
Liu, Zengkai [1 ]
Yu, Shilin [1 ]
Ji, Renjie [1 ]
机构
[1] China Univ Petr, Coll Mech & Elect Engn, Qingdao 266580, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-source information fusion; Ground-source heat pump; Bayesian network; Fault diagnosis; SYSTEMS; PERFORMANCE;
D O I
10.1016/j.apenergy.2013.09.043
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to increase the diagnostic accuracy of ground-source heat pump (GSHP) system, especially for multiple-simultaneous faults, the paper proposes a multi-source information fusion based fault diagnosis methodology by using Bayesian network, due to the fact that it is considered to be one of the most useful models in the filed of probabilistic knowledge representation and reasoning, and can deal with the uncertainty problem of fault diagnosis well. The Bayesian networks based on sensor data and observed information of human being are established, respectively. Each Bayesian network consists of two layers: fault layer and fault symptom layer. The Bayesian network structure is established according to the cause and effect sequence of faults and symptoms, and the parameters are studied by using Noisy-OR and Noisy-MAX model. The entire fault diagnosis model is established by combining the two proposed Bayesian networks. Six fault diagnosis cases of GSHP system are studied, and the results show that the fault diagnosis model using evidences from only sensor data is accurate for single fault, while it is not accurate enough for multiple-simultaneous faults. By adding the observed information as evidences, the probability of fault present for single fault of "Refrigerant overcharge" increases to 100% from 99.69%, and the probabilities of fault present for multiple-simultaneous faults of "Non-condensable gas" and "Expansion valve port largen" increases to almost 100% from 61.1% and 52.3%, respectively. In addition, the observed information can correct the wrong fault diagnostic results, such as "Evaporator fouling". Therefore, the multi-source information fusion based fault diagnosis model using Bayesian network can increase the fault diagnostic accuracy greatly. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Application of a Bayesian Network Based on Multi-Source Information Fusion in the Fault Diagnosis of a Radar Receiver
    Liu, Boya
    Bi, Xiaowen
    Gu, Lijuan
    Wei, Jie
    Liu, Baozhong
    SENSORS, 2022, 22 (17)
  • [2] Fault diagnosis using multi-source information fusion
    Fan, Xianfeng
    Zuo, Ming J.
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 275 - 280
  • [3] Fault Diagnosis Method Based on Multi-Source Information Fusion
    Lei, Ming
    Liao, Dapeng
    Zhou, Chunsheng
    Ci, Wenbin
    Zhang, Hui
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 315 - 318
  • [4] A Multi-source Information Fusion Fault Diagnosis Method for Vectoring Nozzle Control System Based on Bayesian Network
    Zhang, Youyou
    Shi, Jian
    Wang, Shaoping
    Zhang, Yang
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [5] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [6] Rolling Bearing Fault Diagnosis Based on Multi-source Information Fusion
    Zhu, Jing
    Deng, Aidong
    Xing, Lili
    Li, Ou
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (03) : 1470 - 1482
  • [7] Fault Diagnosis of Brake Train based on Multi-Source Information Fusion
    Jin, Yongze
    Xie, Guo
    Hei, Xinhong
    Duan, Haitao
    Chen, Wenbin
    Ma, Jialin
    Zang, Qianbo
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2934 - 2938
  • [8] Grid Fault Diagnosis Based on Information Entropy and Multi-source Information Fusion
    Zeng, Xin
    Xiong, Xingzhong
    Luo, Zhongqiang
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, 67 (02) : 143 - 148
  • [9] Centrifugal Pump Cavitation Fault Diagnosis Based on Feature-Level Multi-Source Information Fusion
    Song, Mengbin
    Zhi, Yifan
    An, Mengdong
    Xu, Wei
    Li, Guohui
    Wang, Xiuli
    PROCESSES, 2024, 12 (01)
  • [10] Reciprocating Compressor Fault Diagnosis Technology Based on Multi-source Information Fusion
    Zhang M.
    Jiang Z.
    Jiang, Zhinong (jiangzhinong@263.net), 1600, Chinese Mechanical Engineering Society (53): : 46 - 52