A combinatorial central limit theorem for randomized orthogonal array sampling designs

被引:0
|
作者
Loh, WL [1 ]
机构
[1] PURDUE UNIV,W LAFAYETTE,IN 47907
来源
ANNALS OF STATISTICS | 1996年 / 24卷 / 03期
关键词
combinatorial central limit theorem; computer experiment; convergence rate; orthogonal array; sampling design; Stein's method;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a random vector uniformly distributed on the unit cube and f: [0, 1](3) --> R be a measurable function. An objective of many computer experiments is to estimate mu = E(f circle X) by computing f at a set of points in [0, 1](3). There is a design issue in choosing these points. Recently Owen and Tang independently suggested using randomized orthogonal arrays in the choice of such a set. This paper investigates the convergence rate to normality of the distribution of the average of a set of f values taken from one of these designs.
引用
收藏
页码:1209 / 1224
页数:16
相关论文
共 50 条
  • [1] A uniform bound on a combinatorial central limit theorem for randomized orthogonal array sampling designs
    Neammanee, K.
    Laipaporn, K.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) : 243 - 255
  • [2] A multivariate central limit theorem for randomized orthogonal array sampling designs in computer experiments
    Loh, Wei-Liem
    ANNALS OF STATISTICS, 2008, 36 (04): : 1983 - 2023
  • [3] A CENTRAL LIMIT THEOREM FOR GENERAL ORTHOGONAL ARRAY BASED SPACE-FILLING DESIGNS
    He, Xu
    Qian, Peter Z. G.
    ANNALS OF STATISTICS, 2014, 42 (05): : 1725 - 1750
  • [4] An Improvement of Normal Approximation of Randomized Orthogonal Array Sampling Designs
    Neammanee, K.
    Sungkamongkol, K.
    Laipaporn, K.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (04) : 713 - 720
  • [5] A COMBINATORIAL CENTRAL LIMIT THEOREM
    HOEFFDING, W
    ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (04): : 558 - 566
  • [6] A functional combinatorial central limit theorem
    Barbour, A. D.
    Janson, S.
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2352 - 2370
  • [7] A Non-uniform Concentration Inequality for Randomized Orthogonal Array Sampling Designs
    Laipaporn, K.
    Neammanee, K.
    THAI JOURNAL OF MATHEMATICS, 2006, 4 (01): : 11 - 34
  • [8] A Randomized Central Limit Theorem
    Eliazar, Iddo
    Klafter, Joseph
    CHEMICAL PHYSICS, 2010, 370 (1-3) : 290 - 293
  • [9] Bounds of the remainder in a combinatorial central limit theorem
    Frolov, Andrei N.
    STATISTICS & PROBABILITY LETTERS, 2015, 105 : 37 - 46
  • [10] On the error bound in a combinatorial central limit theorem
    Chen, Louis H. Y.
    Fang, Xiao
    BERNOULLI, 2015, 21 (01) : 335 - 359