Numerical radii of accretive matrices

被引:23
|
作者
Bedrani, Yassine [1 ]
Kittaneh, Fuad [1 ]
Sababheh, Mohammed [2 ]
机构
[1] Univ Jordan, Dept Math, Amman, Jordan
[2] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 05期
关键词
Operator monotone function; sectorial matrix; accretive matrices; operator means; numerical radius; INEQUALITIES;
D O I
10.1080/03081087.2020.1813679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical radius of a matrix is a scalar quantity that has many applications in the study of matrix analysis. Due to the difficulty in computing the numerical radius, inequalities bounding it have received a considerable attention in the literature. In this article, we present many new inequalities for the numerical radius of accretive matrices. The importance of this study is the presence of a new approach that treats a specific class of matrices, namely the accretive ones. While some of these inequalities can be considered as refinements of other existing ones, others present new insight to some known results for positive matrices.
引用
收藏
页码:957 / 970
页数:14
相关论文
共 50 条
  • [1] Numerical radii for tensor products of matrices
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10): : 1916 - 1936
  • [2] THE NUMERICAL RADII OF WEIGHTED SHIFT MATRICES AND OPERATORS
    Chien, Mao-Ting
    Sheu, Hue-An
    OPERATORS AND MATRICES, 2013, 7 (01): : 197 - 204
  • [3] More inequalities on numerical radii of sectorial matrices
    Yang, Chaojun
    AIMS MATHEMATICS, 2021, 6 (04): : 3927 - 3939
  • [4] Extremality of numerical radii of tensor products of matrices
    Gau, Hwa-Long
    Lu, Yueh-Hua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 : 82 - 98
  • [5] Maximizing the numerical radii of matrices by permuting their entries
    Cheung, Wai-Shun
    Li, Chi-Kwong
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05): : 579 - 594
  • [6] Inequalities for norms and numerical radii of operator matrices
    Kittaneh, Fuad
    Rashid, M. H. M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)
  • [8] NUMERICAL RADII OF ZERO-ONE MATRICES
    DAVIDSON, KR
    HOLBROOK, JAR
    MICHIGAN MATHEMATICAL JOURNAL, 1988, 35 (02) : 261 - 267
  • [9] Numerical radius inequalities involving accretive-dissipative matrices
    Sakkijha, Mona
    Aldabbas, Eman
    Yasin, Omar
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1445 - 1454
  • [10] Sharp Inequalities for the Numerical Radii of Block Operator Matrices
    M. Ghaderi Aghideh
    M. S. Moslehian
    J. Rooin
    Analysis Mathematica, 2019, 45 : 687 - 703