A stable high-order interpolation scheme for superconvergent data

被引:9
|
作者
Pruess, S
Jin, HS
机构
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1996年 / 17卷 / 03期
关键词
stable interpolation; spline collocation; superconvergence; boundary value problems;
D O I
10.1137/S1064827593257481
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A local collocation scheme is developed that yields stable high-order accurate interpolants of discrete data arising from the numerical solution of a differential equation. It should prove to be especially attractive for applications where data are superconvergent, e.g., spline collocation at Gauss points. For simplicity, the formulas are initially developed for a scalar equation, but generalizations are later given for systems. Numerical examples are shown that illustrate the stability, even for the case of highly nonuniform meshes which have proven difficult in prior studies.
引用
收藏
页码:714 / 724
页数:11
相关论文
共 50 条
  • [1] A Stable High-Order Interpolation Scheme for Superconvergent Data
    Pruess, S.
    Jin, H.
    1996, (17):
  • [2] High-order shape interpolation
    Huang, Zhaobin
    Liu, Shibo
    Fu, Xiao-Ming
    COMPUTER AIDED GEOMETRIC DESIGN, 2024, 111
  • [3] Stable high-order cubature formulas for experimental data
    Glaubitz, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 447
  • [4] STABLE AND ACCURATE INTERPOLATION OPERATORS FOR HIGH-ORDER MULTIBLOCK FINITE DIFFERENCE METHODS
    Mattsson, K.
    Carpenter, Mark H.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 2298 - 2320
  • [5] NUMERICAL DIFFERENTIATION BY HIGH-ORDER INTERPOLATION
    HOFFMAN, P
    REDDY, KC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06): : 979 - 987
  • [6] Stepping into high-order interpolation in space
    Rapetti, Francesca
    Aubry, Erwann
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 311 - 325
  • [7] Stepping into high-order interpolation in spaceStepping into high-order interpolation in spaceF. Rapetti, E. Aubry
    Francesca Rapetti
    Erwann Aubry
    Bollettino dell'Unione Matematica Italiana, 2025, 18 (1) : 311 - 325
  • [8] Implementing high-order weighted compact nonlinear scheme on patched grids with a nonlinear interpolation
    Tu, Guohua
    Deng, Xiaogang
    Mao, Meiliang
    COMPUTERS & FLUIDS, 2013, 77 : 181 - 193
  • [9] A NEW NUMERICAL-INTEGRATION SCHEME OF VERY HIGH-ORDER AND A-STABLE
    GNUDI, G
    WATANABE, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (10) : 3492 - 3505
  • [10] High-order polynomial interpolation with CNN: A robust approach for missing data imputation
    Khan, Hufsa
    Rasheed, Muhammad Tahir
    Liu, Han
    Zhang, Shengli
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119