On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates

被引:16
|
作者
Barrios, Tomas P. [3 ]
Bustinza, Rommel [4 ,5 ]
Garcia, Galina C. [6 ]
Hernandez, Erwin [1 ,2 ]
机构
[1] Univ Tecn Federico Santa Maria, AM2V, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[3] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicados, Concepcion, Chile
[4] Univ Concepcion, CI2MA, Concepcion, Chile
[5] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[6] Univ Santiago Chile, Dept Matemat & Ciencia Computac, Santiago, Chile
关键词
Mixed finite element; Augmented formulation; Generalized Stokes problem; Optimal control problem; FINITE-ELEMENT METHODS; APPROXIMATION; EQUATIONS; FLOW;
D O I
10.1016/j.cma.2012.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present an augmented mixed formulation applied to generalized Stokes problem and uses it as state equation in an optimal control problem. The augmented scheme is obtained adding suitable least squares terms to the corresponding velocity-pseudostress formulation of the generalized Stokes problem. To ensure the existence and uniqueness of solution, at continuous and discrete levels, we prove coerciveness of the corresponding augmented bilinear form, and using approximation properties of the respective discrete subspaces, we deduce the optimal rate of convergence. As by product, and considering the associated optimal control problem, we derive error estimates for the approximated control unknown. Finally, we present several numerical examples confirming the theoretical properties of this approach. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 50 条
  • [1] An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem
    Barrios, Tomas P.
    Bustinza, Rommel
    Garcia, Galina C.
    Gonzalez, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 349 - 365
  • [2] Analysis of DG approximations for Stokes problem based on velocity-pseudostress formulation
    Barrios, Tomas P.
    Bustinza, Rommel
    Sanchez, Felipe
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1540 - 1564
  • [3] A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows
    Gatica, Gabriel N.
    Marquez, Antonio
    Sanchez, Manuel A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (17-20) : 1619 - 1636
  • [4] A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density
    Caucao, Sergio
    Mora, David
    Oyarzua, Ricardo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 947 - 983
  • [5] MIXED METHODS FOR THE VELOCITY-PRESSURE-PSEUDOSTRESS FORMULATION OF THE STOKES EIGENVALUE PROBLEM
    Lepe, Felipe
    Rivera, Gonzalo
    Vellojin, Jesus
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1358 - A1380
  • [6] A PRIORI AND A POSTERIORI PSEUDOSTRESS-VELOCITY MIXED FINITE ELEMENT ERROR ANALYSIS FOR THE STOKES PROBLEM
    Carstensen, Carsten
    Kim, Dongho
    Park, Eun-Jae
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2501 - 2523
  • [7] A mixed discontinuous Galerkin method with symmetric stress for Brinkman problem based on the velocity-pseudostress formulation
    Qian, Yanxia
    Wu, Shuonan
    Wang, Fei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368 (368)
  • [8] A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem
    Caceres, Ernesto
    Gatica, Gabriel N.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 296 - 331
  • [9] Error analysis for the pseudostress formulation of unsteady Stokes problem
    Kim, Dongho
    Park, Eun-Jae
    Seo, Boyoon
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 959 - 996
  • [10] Error analysis for the pseudostress formulation of unsteady Stokes problem
    Dongho Kim
    Eun-Jae Park
    Boyoon Seo
    Numerical Algorithms, 2022, 91 : 959 - 996