A Nutrient-Sensing Transition at Birth Triggers Glucose-Responsive Insulin Secretion

被引:85
|
作者
Helman, Aharon [1 ]
Cangelosi, Andrew L. [2 ,3 ,4 ,5 ,6 ]
Davis, Jeffrey C. [1 ]
Quan Pham [1 ]
Rothman, Arielle [1 ]
Faust, Aubrey L. [1 ]
Straubhaar, Juerg R. [1 ]
Sabatini, David M. [2 ,3 ,4 ,5 ,6 ]
Melton, Douglas A. [1 ,4 ]
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[3] MIT, Dept Biol, Cambridge, MA 02142 USA
[4] Howard Hughes Med Inst, Cambridge, MA 02139 USA
[5] Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[6] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
关键词
embryo; in vitro differentiation; insulin secretion; maturation; mTORC1; nutrient sensing; pancreas; stem cell-derived β cells; β; cells;
D O I
10.1016/j.cmet.2020.04.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A drastic transition at birth, from constant maternal nutrient supply in utero to intermittent postnatal feeding, requires changes in the metabolic system of the neonate. Despite their central role in metabolic homeostasis, little is known about how pancreatic beta cells adjust to the new nutritional challenge. Here, we find that after birth cell function shifts from amino acid- to glucose-stimulated insulin secretion in correlation with the change in the nutritional environment. This adaptation is mediated by a transition in nutrient sensitivity of the mTORC1 pathway, which leads to intermittent mTORC1 activity. Disrupting nutrient sensitivity of mTORC1 in mature b cells reverts insulin secretion to a functionally immature state. Finally, manipulating nutrient sensitivity of mTORC1 in stem cell-derived beta cells in vitro strongly enhances their glucose-responsive insulin secretion. These results reveal a mechanism by which nutrients regulate beta cell function, thereby enabling a metabolic adaptation for the newborn.
引用
收藏
页码:1004 / +
页数:18
相关论文
共 50 条
  • [1] Understanding nutrient-sensing at birth
    Kriebs, Anna
    NATURE REVIEWS ENDOCRINOLOGY, 2020, 16 (07) : 344 - 344
  • [2] Understanding nutrient-sensing at birth
    Anna Kriebs
    Nature Reviews Endocrinology, 2020, 16 : 344 - 344
  • [3] INSULIN THAT'S GLUCOSE-RESPONSIVE
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, 93 (07) : 26 - 26
  • [4] Glucose-responsive insulin for diabetes
    Marchal, Iris
    NATURE BIOTECHNOLOGY, 2024, 42 (11) : 1650 - 1650
  • [5] Glucose-responsive insulin secretion from a human pancreatic β-cell line
    De la Tour, DD
    Demeterco, C
    Yoo, SJ
    Halvorsen, T
    Itkin-Ansari, P
    Bossie, S
    Lopez, A
    Loy, M
    Beattie, GM
    Hayek, A
    Levine, F
    DIABETES, 2000, 49 : A31 - A31
  • [6] Glucose-responsive micelles for insulin release
    Li, Xiuhua
    Wu, Wei
    Li, Jianshu
    JOURNAL OF CONTROLLED RELEASE, 2015, 213 : E122 - E123
  • [7] Recent Progress in Glucose-Responsive Insulin
    Liu, Yun
    Wang, Shiqi
    Wang, Zejun
    Yu, Jicheng
    Wang, Jinqiang
    Buse, John B.
    Gu, Zhen
    DIABETES, 2024, 73 (09) : 1377 - 1388
  • [8] Development of glucose-responsive "smart" insulin
    Chou, Hung-Chieh
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2016, 120 : S20 - S21
  • [9] Glucose-responsive insulin delivery systems
    Rigla Cros, Mercedes
    ENDOCRINOLOGIA Y NUTRICION, 2016, 63 (04): : 143 - 144
  • [10] Calpain mediated cleavage of IA-2 and glucose-responsive insulin secretion
    Roberts, GA
    Lobner, K
    Bearzatto, M
    Persaud, SJ
    Jones, PM
    Christie, MR
    DIABETES, 2002, 51 : A596 - A596