Exploring biological interaction networks with tailored weighted quasi-bicliques

被引:11
|
作者
Chang, Wen-Chieh [1 ]
Vakati, Sudheer [1 ]
Krause, Roland [2 ,3 ]
Eulenstein, Oliver [1 ]
机构
[1] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
[2] Free Univ Berlin, Dept Comp Sci, D-14195 Berlin, Germany
[3] Max Planck Inst Mol Genet, Dept Computat Mol Biol, D-14195 Berlin, Germany
来源
BMC BIOINFORMATICS | 2012年 / 13卷
基金
美国国家科学基金会;
关键词
Bipartite Graph; Integer Program; Edge Weight; Biological Network; Molecular Network;
D O I
10.1186/1471-2105-13-S10-S16
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Biological networks provide fundamental insights into the functional characterization of genes and their products, the characterization of DNA-protein interactions, the identification of regulatory mechanisms, and other biological tasks. Due to the experimental and biological complexity, their computational exploitation faces many algorithmic challenges. Results: We introduce novel weighted quasi-biclique problems to identify functional modules in biological networks when represented by bipartite graphs. In difference to previous quasi-biclique problems, we include biological interaction levels by using edge-weighted quasi-bicliques. While we prove that our problems are NP-hard, we also describe IP formulations to compute exact solutions for moderately sized networks. Conclusions: We verify the effectiveness of our IP solutions using both simulation and empirical data. The simulation shows high quasi-biclique recall rates, and the empirical data corroborate the abilities of our weighted quasi-bicliques in extracting features and recovering missing interactions from biological networks.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Exploring biological interaction networks with tailored weighted quasi-bicliques
    Wen-Chieh Chang
    Sudheer Vakati
    Roland Krause
    Oliver Eulenstein
    BMC Bioinformatics, 13
  • [2] Mining Biological Interaction Networks Using Weighted Quasi-Bicliques
    Chang, Wen-Chieh
    Vakati, Sudheer
    Krause, Roland
    Eulenstein, Oliver
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2011, 6674 : 428 - +
  • [3] Searching quasi-bicliques in proteomic data
    Liu, Hongbiao
    Liu, Juan
    Wang, Longhui
    CIS WORKSHOPS 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY WORKSHOPS, 2007, : 77 - +
  • [4] Quasi-bicliques: Complexity and binding pairs
    Liu, Xiaowen
    Li, Jinyan
    Wang, Lusheng
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 255 - +
  • [5] Near optimal solutions for maximum quasi-bicliques
    Lusheng Wang
    Journal of Combinatorial Optimization, 2013, 25 : 481 - 497
  • [6] Near optimal solutions for maximum quasi-bicliques
    Wang, Lusheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (03) : 481 - 497
  • [7] Near Optimal Solutions for Maximum Quasi-bicliques
    Wang, Lusheng
    COMPUTING AND COMBINATORICS, 2010, 6196 : 409 - 418
  • [8] Modeling Protein Interacting Groups by Quasi-Bicliques: Complexity, Algorithm, and Application
    Liu, Xiaowen
    Li, Jinyan
    Wang, Lusheng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2010, 7 (02) : 354 - 364
  • [9] A case study on financial ratios via cross-graph quasi-bicliques
    Sim, Kelvin
    Liu, Guimei
    Gopalkrishnan, Vivekanand
    Li, Jinyan
    INFORMATION SCIENCES, 2011, 181 (01) : 201 - 216
  • [10] Mining Quasi-Bicliques from HIV-1-Human Protein Interaction Network: A Multiobjective Biclustering Approach
    Maulik, Ujjwal
    Mukhopadhyay, Anirban
    Bhattacharyya, Malay
    Kaderali, Lars
    Brors, Benedikt
    Bandyopadhyay, Sanghamitra
    Eils, Roland
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 423 - 435