Demagnetizing Factors for Nonuniform Nonlinear Cylinders and Rectangular Prisms

被引:0
|
作者
Farahani, Alireza V. [1 ]
Konrad, Adalbert [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M53 3G4, Canada
关键词
Fluxmetric demagnetizing factor; magnetization distribution; magnetometric demagnetizing factor;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current methods to obtain fluxmetric and magnetometric demagnetizing factors assume a uniform susceptibility and solve initially the surface magnetic pole density. In this paper, a different approach is applied. This approach considers susceptibility as a function of position and finds the field distributions directly. It is proved that the magnetization distribution and the corresponding magnetic field minimize the magnetostatic energy and thus are the unique solution to the given magnetostatic problem. To verify the method, both rectangular and cylindrical magnetic media with nonlinear magnetization curves or a step change in susceptibility are considered.
引用
收藏
页码:3225 / 3228
页数:4
相关论文
共 50 条
  • [1] Demagnetizing factors for rectangular prisms
    Chen, DX
    Pardo, E
    Sanchez, A
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (06) : 2077 - 2088
  • [2] Demagnetizing factors of rectangular prisms and ellipsoids
    Chen, DX
    Pardo, E
    Sanchez, A
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (04) : 1742 - 1752
  • [3] Demagnetizing factors for rectangular ferromagnetic prisms
    Aharoni, A
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (06) : 3432 - 3434
  • [4] Demagnetizing factors for completely shielded rectangular prisms
    Pardo, E
    Chen, DX
    Sanchez, A
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (09) : 5365 - 5369
  • [5] Demagnetizing effects in stacked rectangular prisms
    Christensen, D. V.
    Nielsen, K. K.
    Bahl, C. R. H.
    Smith, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (21)
  • [6] The demagnetizing field of a nonuniform rectangular prism
    Smith, A.
    Nielsen, K. K.
    Christensen, D. V.
    Bahl, C. R. H.
    Bjork, R.
    Hattel, J.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (10)
  • [7] Volume average demagnetizing tensor of rectangular prisms
    Fukushima, H
    Nakatani, Y
    Hayashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (01) : 193 - 198
  • [8] DEMAGNETIZING FACTORS FOR CYLINDERS
    CHEN, DX
    BRUG, JA
    GOLDFARB, RB
    IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (04) : 3601 - 3619
  • [10] Fluxmetric and magnetometric demagnetizing factors for cylinders
    Chen, D. -X.
    Pardo, E.
    Sanchez, A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 306 (01) : 135 - 146