Twist-two operators and the BFKL regime - nonstandard solutions of the Baxter equation

被引:14
|
作者
Janik, Romuald A. [1 ]
机构
[1] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 11期
关键词
AdS-CFT Correspondence; Bethe Ansatz; Integrable Field Theories; ANOMALOUS DIMENSIONS; QCD;
D O I
10.1007/JHEP11(2013)153
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The link between BFKL physics and twist-two operators involves an analytical continuation in the spin of the operators away from the physical even integer values. Typically this is done only after obtaining an analytical result for integer spin through nested harmonic sums. In this paper we propose analyticity conditions for the solution of Baxter equation which would work directly for any value of complex spin and reproduce results from the analytical continuation of harmonic sums. We carry out explicit contructions up to 2-loop level. These nonstandard solutions of the Baxter equation have rather surprising asymptotics. We hope that these analyticity conditions may be used for incorporating them into the exact TBA/FiNLIE/QSC approaches valid at any coupling.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Twist-two operators and the BFKL regime — nonstandard solutions of the Baxter equation
    Romuald A. Janik
    Journal of High Energy Physics, 2013
  • [2] Instanton corrections to twist-two operators
    Luis F. Alday
    Gregory P. Korchemsky
    Journal of High Energy Physics, 2017
  • [3] Evolution kernels of twist-two operators
    Ji, Yao
    Manashov, Alexander
    Moch, Sven-Olaf
    PHYSICAL REVIEW D, 2023, 108 (05)
  • [4] Instanton corrections to twist-two operators
    Alday, Luis F.
    Korchemsky, Gregory P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06):
  • [5] Constraints for twist-two alien operators in QCD
    Falcioni, G.
    Herzog, F.
    Moch, S.
    Van Thurenhout, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (11):
  • [6] Nonstandard Solutions of the Yang–Baxter Equation
    Anthony Giaquinto
    Timothy J. Hodges
    Letters in Mathematical Physics, 1998, 44 : 67 - 75
  • [8] Counting form factors of twist-two operators
    Ji, XD
    Lebed, RF
    PHYSICAL REVIEW D, 2001, 63 (07) : 760051 - 760054
  • [9] On twist-two operators in N=4 SYM
    Henn, J
    Jarczak, C
    Sokatchev, E
    NUCLEAR PHYSICS B, 2005, 730 (1-2) : 191 - 209
  • [10] On structure constants with two spinning twist-two operators
    Marco S. Bianchi
    Journal of High Energy Physics, 2019