Influence of multi-component glass on sintering behavior and microwave properties of Zr non-stoichiometricly substituted Ca[(Li1/3Nb2/3)]O3-δ ceramic

被引:4
|
作者
Hu, Mingzhe [1 ,2 ]
Fu, Yang [2 ]
Zhou, Di [2 ]
Gu, Haoshuang [2 ]
Wang, Yu [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Kowlong, Hong Kong, Peoples R China
[2] Hubei Univ, Fac Elect Sci & Technol, Wuhan 430062, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
DIELECTRIC-PROPERTIES; COMPLEX PEROVSKITE; TEMPERATURE; ADDITIVES; RAMAN;
D O I
10.1007/s10854-012-0661-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A low melting point multi-component glass (Li2O-B2O3-SiO2-CaO-Al2O3) was incorporated into Zr non-stoichiometric substituted Ca[(Li1/3Nb2/3)]O3-delta ceramic to lower its sintering temperature for LTCC applications. The glass acts as liquid phase sintering aid and it can lower the sintering temperature of the ceramic from 1,170 A degrees C to 900 A degrees C. Dense and perovskite solid solutions can be obtained in all glass doped specimens with, however, a small amount of Ca2Nb2O7-type pyrochlore phase. Raman spectra indicate that the B-site 1:2 ordering structure in Ca[(Li1/3Nb2/3)(0.95)Zr-0.15]O3+delta ceramic is gradually softened with the increase of the glass content and localized B-site 1:1 ordering domains begin to appear when the glass content reaches 15 wt%. The optimal microwave dielectric properties of epsilon(r) = 29.37, Qf = 5,420 GHz and tau(f) = -24.9 ppm/A degrees C can be obtained in 5 wt% glass doped Ca[(Li1/3Nb2/3)(0.95)Zr-0.15]O3+delta ceramic when sintered at 940 A degrees C for 4 h. No chemical reaction exists between Ag and the above ceramic, which indicates itself a potential candidator in LTCC industry.
引用
收藏
页码:1775 / 1782
页数:8
相关论文
共 50 条
  • [1] Influence of multi-component glass on sintering behavior and microwave properties of Zr non-stoichiometricly substituted Ca[(Li1/3Nb2/3)]O3-δ ceramic
    Mingzhe Hu
    Yang Fu
    Di Zhou
    Haoshuang Gu
    Yu Wang
    Journal of Materials Science: Materials in Electronics, 2012, 23 : 1775 - 1782
  • [2] Dielectric properties of Ti substituted Ca(Li1/3Nb2/3)O3-δ ceramics
    Choi, JW
    Kucheiko, S
    Yoon, SJ
    Kim, HJ
    Jung, HJ
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1998, 32 : S334 - S336
  • [3] Microwave dielectric properties of Ca[(Li1/3Nb2/3)0.92Zr0.08]O3-δ ceramics with glass addition
    Xiong, Gang
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 318 - 321
  • [4] Low-temperature sintering and microwave dielectric properties of Ca(Li1/3Nb2/3)O3-δ ceramics
    Liu, P
    Kim, ES
    Yoon, KH
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2001, 40 (9B): : 5769 - 5773
  • [5] Influence of additives on the microwave dielectric properties of Ca[(Li1/3Nb2/3)0.92Zr0.08]O3-δ ceramics
    Xiong, G.
    Zhang, H. F.
    ADVANCES IN ENGINEERING MATERIALS AND APPLIED MECHANICS, 2016, : 645 - 648
  • [6] Effect of glass additions on Ca[(Li1/3Nb2/3)0.92Zr0.08]O3-δ microwave ceramics
    Xiong, Hui
    Xiong, Gang
    She, Cuihua
    ADVANCED ENGINEERING MATERIALS II, PTS 1-3, 2012, 535-537 : 805 - +
  • [7] Microwave dielectric properties of Ca[(Li1/3Nb2/3)1-x Tix]O3-δ ceramics with glass
    Ha, Jong-Yoon
    Choi, Ji-Won
    Kang, Chong-Yun
    Yoon, Seok-Jin
    Choi, Doo Jin
    Kim, Hyun-Jai
    JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) : 399 - 403
  • [8] Microwave dielectric properties of Ca(Li1/3Nb2/3)O3-δ ceramics with ZnO additive
    Liao, Jihong
    Dai, Ying
    Chen, Wen
    Tan, Lianxiang
    Qu, Shaohua
    FUNCTIONAL AND ELECTRONIC MATERIALS, 2011, 687 : 144 - +
  • [9] Low temperature sintering of Ca[(Li1/3Nb2/3) 1-xTix]O3-δ based microwave dielectric ceramics with glass frit
    Jong-Yoon, H.A.
    Choi, Ji-Won
    Kang, Chong-Yun
    Yoon, Seok-Jin
    Choi, Doo Jin
    Kim, Hyun-Jai
    Jong-Yoon, H.A., 1600, Japan Society of Applied Physics (44):
  • [10] Microwave Dielectric Properties of Ca[(Li1/3Nb2/3)0.95Zr0.05]O3-δ-xTiO2 Ceramics
    Xiong, Gang
    LIQUID CRYSTALS AND RELATED MATERIALS II, 2012, 181-182 : 405 - 408