Temperature-dependent collective effects for silicene and germanene

被引:15
|
作者
Iurov, Andrii [1 ]
Gumbs, Godfrey [2 ,3 ]
Huang, Danhong [1 ,4 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, 1313 Goddard SE, Albuquerque, NM 87106 USA
[2] CUNY Hunter Coll, Dept Phys & Astron, 695 Pk Ave, New York, NY 10065 USA
[3] DIPC, P Manuel Lardizabal 4, San Sebastian 20018, Basque Country, Spain
[4] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA
关键词
exchange energy; electron correlation energy; plasmons; silicene; germanene; GRAPHENE; ENERGY; MODES;
D O I
10.1088/1361-648X/29/13/135602
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have numerically calculated electron exchange and correlation energies and dynamical polarization functions for recently discovered silicene, germanene and other buckled honeycomb lattices at various temperatures. We have compared the dependence of these energies on the chemical potential, field-induced gap and temperature and we have concluded that in many cases they behave qualitatively in a similar way, i.e. increasing with the doping, decreasing significantly at elevated temperatures, and displaying different dependences on the asymmetry gap at various temperatures. Furthermore, we have used the dynamical polarizability to study the 'split' plasmon branches in the buckled lattices and predicted a unique splitting, different from that in gapped graphene, for various energy gaps. Our results are crucial for stimulating electronic, transport and collective studies of silicene and germanene, as well as for enhancing silicene-based fabrication and technologies for photovoltaics and transistor devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Temperature-dependent Coulomb excitations in silicene
    Wu, J. Y.
    Chen, S. C.
    Lin, M. F.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [2] Temperature-dependent optical spectra in monolayer silicene
    Salehi, H.
    Gharbavi, K.
    COMPUTATIONAL CONDENSED MATTER, 2021, 26
  • [3] Temperature-Dependent High Magnetoresistance in Zigzag Silicene Nanoribbon Heterostructure
    Kharadi, Mubashir A.
    Malik, Gul Faroz A.
    Mittal, Sparsh
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (07) : 4010 - 4015
  • [4] Temperature-dependent dielectric functions in atomically thin graphene, silicene, and arsenene
    Yang, J. Y.
    Liu, L. H.
    APPLIED PHYSICS LETTERS, 2015, 107 (09)
  • [5] Infrared absorbance of silicene and germanene
    Bechstedt, Friedhelm
    Matthes, Lars
    Gori, Paola
    Pulci, Olivia
    APPLIED PHYSICS LETTERS, 2012, 100 (26)
  • [6] Spin transport in silicene and germanene
    Bishnoi, Bhupesh
    Ghosh, Bahniman
    RSC ADVANCES, 2013, 3 (48) : 26153 - 26159
  • [7] Vibrational properties of silicene and germanene
    Scalise, Emilio
    Houssa, Michel
    Pourtois, Geoffrey
    van den Broek, B.
    Afanas'ev, Valery
    Stesmans, Andre
    NANO RESEARCH, 2013, 6 (01) : 19 - 28
  • [8] Theoretical Study of Silicene and Germanene
    Houssa, M.
    van den Broek, B.
    Scalise, E.
    Pourtois, G.
    Afanas'ev, V. V.
    Stesmans, A.
    GRAPHENE, GE/III-V, AND EMERGING MATERIALS FOR POST CMOS APPLICATIONS 5, 2013, 53 (01): : 51 - 62
  • [9] Tunable Bandgap in Silicene and Germanene
    Ni, Zeyuan
    Liu, Qihang
    Tang, Kechao
    Zheng, Jiaxin
    Zhou, Jing
    Qin, Rui
    Gao, Zhengxiang
    Yu, Dapeng
    Lu, Jing
    NANO LETTERS, 2012, 12 (01) : 113 - 118
  • [10] Current developments in silicene and germanene
    Kaloni, T. P.
    Schreckenbach, G.
    Freund, M. S.
    Schwingenschloegl, U.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (02): : 133 - 142