FISHER-SELECTIVE SEARCH FOR OBJECT DETECTION

被引:0
|
作者
Buzcu, Ilker [1 ]
Alatan, A. Aydin [2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[2] Middle East Tech Univ, Ctr Image Anal OGAM, Dept Elect & Elect Engn, Ankara, Turkey
关键词
Visual Object Recognition; Fisher Vectors; Selective Search;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An enhancement to one of the existing visual object detection approaches is proposed for generating candidate windows that improves detection accuracy at no additional computational cost. Hypothesis windows for object detection are obtained based on Fisher Vector representations over initially obtained superpixels. In order to obtain new window hypotheses, hierarchical merging of superpixel regions are applied, depending upon improvements on some objectiveness measures with no additional cost due to additivity of Fisher Vectors. The proposed technique is further improved by concatenating these representations with that of deep networks. Based on the results of the simulations on typical data sets, it can be argued that the approach is quite promising for its use of handcrafted features left to dust due to the rise of deep learning.
引用
收藏
页码:3633 / 3637
页数:5
相关论文
共 50 条
  • [1] Selective Search for Object Recognition
    Uijlings, J. R. R.
    van de Sande, K. E. A.
    Gevers, T.
    Smeulders, A. W. M.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) : 154 - 171
  • [2] Selective Search for Object Recognition
    J. R. R. Uijlings
    K. E. A. van de Sande
    T. Gevers
    A. W. M. Smeulders
    International Journal of Computer Vision, 2013, 104 : 154 - 171
  • [3] Segmentation Driven Object Detection with Fisher Vectors
    Cinbis, Ramazan Gokberk
    Verbeek, Jakob
    Schmid, Cordelia
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2968 - 2975
  • [4] Selective Search Method for Object Localization and Detection using Wavelets and Hierarchical Segmentations
    Cervantes, S.
    Pinto, R.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1265 - 1272
  • [5] Segmentation as Selective Search for Object Recognition
    van de Sande, Koen E. A.
    Uijlings, Jasper R. R.
    Gevers, Theo
    Smeulders, Arnold W. M.
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1879 - 1886
  • [6] Visual search by selective spatial and object attention
    Exel, S
    Ross, WD
    Pessoa, L
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 4680 - 4680
  • [7] SEARCH FOR FISHER,A - FISHER,F
    NASH, A
    CHILD WELFARE, 1974, 53 (05) : 331 - 332
  • [8] Object Detection by Admissible Region Search
    Chen, Xiaoming
    An, Senjian
    Liu, Wanquan
    Li, Wanqing
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 521 - +
  • [9] DetNAS: Backbone Search for Object Detection
    Chen, Yukang
    Yang, Tong
    Zhang, Xiangyu
    Meng, Gaofeng
    Xiao, Xinyu
    Sun, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] Efficient Region Search for Object Detection
    Vijayanarasimhan, Sudheendra
    Grauman, Kristen
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1401 - 1408