Series expansions for the magnetisation of a solid superparamagnetic system of non-interacting particles with anisotropy

被引:24
|
作者
Cregg, PJ [1 ]
Bessais, L
机构
[1] Waterford Inst Technol, Sch Engn, Dept Engn Technol, Waterford, Ireland
[2] CNRS, Lab Spect Terres Rares, UPR 209, F-92195 Meudon, France
关键词
anisotropy; superparamagnetism; fine particles; magnetisation curves;
D O I
10.1016/S0304-8853(99)00422-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The calculation of the magnetisation curve of an assembly of non-interacting fine superparamagnetic particles, with uniaxial anisotropy and easy axes fixed in a solid non-magnetic matrix is considered. The presence of anisotropy complicates the calculation which otherwise would result in the Langevin function. The calculation for particles with anisotropy and easy axes fixed at arbitrary angles to the external field, requires the calculation of the partition function, which has previously been expressed exactly as a double integral or as a sum of single integrals. We have recently shown how the partition function can be reduced to a single integral and here we show how this can be expressed as a double infinite series containing known functions. Special cases are considered, some existing analytic formulae are reobtained, and some new analytic formulae are presented. For identical particles the deviation from the Langevin function is known to be considerable. The formulae presented should facilitate the incorporation of the effects of anisotropy. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:554 / 564
页数:11
相关论文
共 50 条
  • [1] Density waves in a system of non-interacting particles
    Kolmes, E. J.
    Geyko, V. I.
    Fisch, N. J.
    PHYSICS LETTERS A, 2016, 380 (38) : 3061 - 3066
  • [2] Superparamagnetic behavior of non-interacting antiferromagnetic ferritin nanoparticles
    Kaur, Navneet
    Tiwari, S. D.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 185
  • [3] DISPERSION OF ENSEMBLES OF NON-INTERACTING PARTICLES
    HEARD, WB
    ASTROPHYSICS AND SPACE SCIENCE, 1976, 43 (01) : 63 - 82
  • [4] Student difficulties with the basics for a system of non-interacting identical particles
    Marshman, Emily
    Keebaugh, Christof
    Singh, Chandralekha
    2021 PHYSICS EDUCATION RESEARCH CONFERENCE (PERC), 2022, : 257 - 263
  • [5] DIFFUSION OF NON-INTERACTING PARTICLES IN CYLINDRICAL GEOMETRY
    FLEMING, RJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1963, 82 (530): : 1006 - &
  • [6] CONDUCTIVITY CORRELATION IN SYSTEMS OF NON-INTERACTING PARTICLES
    DYRE, JC
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1984, 50 (05): : 585 - 590
  • [7] CHEMICAL DIFFUSION IN THE LATTICE GAS OF NON-INTERACTING PARTICLES
    KUTNER, R
    PHYSICS LETTERS A, 1981, 81 (04) : 239 - 240
  • [8] Magnetic anisotropy of non-interacting collinear nanocrystal-chains
    Charilaou, M.
    Kind, J.
    Garcia-Rubio, I.
    Schueler, D.
    Gehring, A. U.
    APPLIED PHYSICS LETTERS, 2014, 104 (11)
  • [9] Thermal investigation of relaxations of interacting and non-interacting amorphous solid dispersions
    Peter-Haraszti, Anna
    Zahonyi, Petra
    Farkas, Attila
    Csontos, Istvan
    Nagy, Zsombor Kristof
    Szabo, Edina
    Van den Mooter, Guy
    Marosi, Gyorgy
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (15) : 8067 - 8083
  • [10] Interference with Non-Interacting Free Particles and a Special Type of Detector
    Contopoulos, Ioannis
    Tzemos, Athanasios C.
    Zanias, Foivos
    Contopoulos, George
    PARTICLES, 2023, 6 (01) : 121 - 133