A neural network based identification system for VIRGO seismic noise

被引:0
|
作者
Acernese, F [1 ]
Barone, F [1 ]
De Rosa, R [1 ]
Eleuteri, A [1 ]
Milano, L [1 ]
Tagliaferri, R [1 ]
机构
[1] Univ Naples, Dipartimento Sci Fis, I-80126 Naples, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a Neural Network-based approach is presented for the real time seismic noise identification of GW laser interferometric antenna. The procedure allows the estimation of seismic events in a background noise. The recognition of such events is very important for the data quality of the interferometer output. The algorithm we propose is quite general and robust, taking into account that it does not requires a-priori informations on the data, nor precise model, and constitute a powerful tool for quality data analysis.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 50 条
  • [1] A hierarchical neural network-based approach to VIRGO noise identification
    Acernese, F
    Barone, F
    Eleuteri, A
    Garufi, F
    Milano, L
    Tagliaferri, R
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 253 - 258
  • [2] A neural network approach for the noise identification and Data Quality of the VIRGO antenna
    Barone, F
    Ciaramella, A
    Eleuteri, A
    Garufi, F
    Milano, L
    Tagliaferri, R
    GRAVITATIONAL WAVES, 2000, 523 : 465 - 466
  • [3] Identification for the Active Noise Control System based on Neural Network
    Wang, Bing
    MEASUREMENT TECHNOLOGY AND ITS APPLICATION, PTS 1 AND 2, 2013, 239-240 : 422 - 425
  • [4] A neural network-based ARX model of Virgo noise.
    Barone, F
    De Rosa, R
    Eleuteri, A
    Garufi, F
    Milano, L
    Tagliaferri, R
    NEURAL NETS - WIRN VIETRI-99, 1999, : 171 - 183
  • [5] Neural network system identification for improved noise rejection
    Hyland, DC
    Collins, EG
    Haddad, WM
    Hunter, DL
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (02) : 233 - 258
  • [6] Properties of seismic noise at the Virgo site
    Acernese, F
    Amico, P
    Arnaud, N
    Babusci, D
    Barillé, R
    Barone, F
    Barsotti, L
    Barsuglia, M
    Beauville, F
    Bizouard, MA
    Boccara, C
    Bondu, F
    Bosi, L
    Bradaschia, C
    Bracci, L
    Braccini, S
    Brillet, A
    Brisson, V
    Brocco, L
    Buskulic, D
    Calamai, G
    Calloni, E
    Campagna, E
    Cavalier, F
    Cella, G
    Chassande-Mottin, E
    Cleva, F
    Cokelaer, T
    Corda, C
    Coulon, JP
    Cuoco, E
    Dattilo, V
    Davier, M
    De Rosa, R
    Di Fiore, L
    Di Virgilio, A
    Dujardin, B
    Eleuteri, A
    Enard, D
    Ferrante, I
    Fidecaro, F
    Fiori, I
    Flaminio, R
    Fournier, JD
    Frasca, S
    Frasconi, F
    Gammaitoni, L
    Gennai, A
    Giazotto, A
    Giordano, G
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S433 - S440
  • [7] A firearm identification system based on neural network
    Kong, J
    Li, DG
    Watson, AC
    AI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2903 : 315 - 326
  • [8] Identification of Complex System Based on Neural Network
    Dou Zhenhai
    Wang Yajing
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 4342 - 4347
  • [9] Seismic Landslide Hazard Identification and Assessment Based on BP Neural Network
    Fan, Jinsheng
    Li, Weidong
    Shan, Xinjian
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENTAL ENGINEERING (SEEE 2015), 2015, 14 : 183 - 185
  • [10] Performance of the International Monitoring System Seismic Network Based on Ambient Seismic Noise Measurements
    Peter J. Gaebler
    Lars Ceranna
    Pure and Applied Geophysics, 2021, 178 : 2419 - 2436