The optimal power puzzle: scrutiny of the monotone likelihood ratio assumption in multiple testing

被引:16
|
作者
Cao, Hongyuan [1 ]
Sun, Wenguang [2 ]
Kosorok, Michael R. [3 ]
机构
[1] Univ Chicago, Dept Hlth Studies, Chicago, IL 60637 USA
[2] Univ So Calif, Dept Informat & Operat Management, Marshall Sch Business, Los Angeles, CA 90089 USA
[3] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27514 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
False discovery rate; Heteroscedasticity; Monotone likelihood ratio; Multiple testing dependence; FALSE DISCOVERY RATE; DEPENDENCE; RATES;
D O I
10.1093/biomet/ast001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In single hypothesis testing, power is a nondecreasing function of Type I error rate; hence it is desirable to test at the nominal level exactly to achieve optimal power. The optimal power puzzle arises from the fact that for multiple testing under the false discovery rate paradigm, such a monotonic relationship may not hold. In particular, exact false discovery rate control may lead to a less powerful testing procedure if a test statistic fails to fulfil the monotone likelihood ratio condition. In this article, we identify different scenarios wherein the condition fails and give caveats for conducting multiple testing in practical settings.
引用
收藏
页码:495 / 502
页数:8
相关论文
共 17 条